Jump to content

ഓക്സിജൻ

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
ഓക്സിജൻ, 00O
ഓക്സിജൻ
AllotropesO2, O3 (ozone) and more (see Allotropes of oxygen)
Appearance
ദ്രാവക ഓക്സിജൻ
Standard atomic weight Ar°(O)
ഫലകം:Infobox element/standard atomic weight format
ഓക്സിജൻ in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
-

O

S
നൈട്രജൻഓക്സിജൻഫ്ലൂറിൻ
Groupgroup 16 (chalcogens)
Periodperiod 2
Block  p-block
Electron configuration[He] 2s2 2p4
Electrons per shell2, 6
Physical properties
Phase at STPgas
Melting point54.36 K ​(-218.79 °C, ​-361.82 °F)
Boiling point90.20 K ​(-182.95 °C, ​-297.31 °F)
Density (at STP)1.429 g/L
Critical point154.59 K, 5.043 MPa
Heat of fusion(O2) 0.444 kJ/mol
Heat of vaporization(O2) 6.82 kJ/mol
Molar heat capacity(O2)
29.378 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K)       61 73 90
Atomic properties
Oxidation states−1, −2, +1, +2
ElectronegativityPauling scale: 3.44
Ionization energies
Atomic radiusempirical: 60 pm
calculated: 48 pm
Covalent radius73 pm
Van der Waals radius152 pm
Color lines in a spectral range
Spectral lines of ഓക്സിജൻ
Other properties
Natural occurrenceprimordial
Crystal structurecubic
Cubic crystal structure for ഓക്സിജൻ
Speed of sound(gas, 27 °C) 330 m/s
Thermal conductivity26.58x10-3  W/(m⋅K)
Magnetic orderingparamagnetic
CAS Number7782-44-7
Isotopes of ഓക്സിജൻ
Template:infobox ഓക്സിജൻ isotopes does not exist
 വർഗ്ഗം: ഓക്സിജൻ
| references
വികസിത ആവർത്തനപ്പട്ടികയിൽ നിന്നും

മനുഷ്യനടക്കമുള്ള ജീവജാലങ്ങളുടെ പ്രാണൻ നിലനിർത്തുന്നതിന് അത്യാവശ്യമായ ഒരു വാതക മൂലകമാണ് ഓക്സിജൻ (Oxygen). ശ്വസിക്കുന്ന വാ‍യുവിലെ ഓക്സിജനുപയോഗിച്ചാണ് ജന്തുകോശങ്ങൾ ശരീരപ്രവർത്തനങ്ങൾക്കാവശ്യമായ ഊർജ്ജം ഉൽപ്പാദിപ്പിക്കുന്നത്. ഈ കാരണത്താൽ ഇതു പ്രാണവായു എന്ന പേരിലും അറിയപ്പെടുന്നു. ഇന്ധനങ്ങളെ കത്താൻ സഹായിക്കുന്ന മൂലകം കൂടിയാണ് ഓക്സിജൻ. ഓക്സിജനുമായി സംയോജിക്കുന്ന പ്രക്രിയയാണ് ജ്വലനം.

മറ്റു മൂലകങ്ങളുമായി അയോണികമോ സഹസംയോജകമോ ആയ ബന്ധത്തിൽ സംയുക്തരൂപത്തിലാണ് ഓക്സിജൻ ഭൂമിയിൽ കാണപ്പെടുന്നത്. അന്തരീക്ഷവായുവിൽ നൈട്രജനുശേഷം കൂടുതലുള്ള രണ്ടാമത്തെ മൂലകമാണ് ഓക്സിജൻ.

250 കോടി വർഷങ്ങൾക്കു മുൻപുമുതൽ 160 കോടി വർഷങ്ങൾ മുൻപുവരെയുള്ള കാലഘട്ടമായ പാലിയോപ്രോട്ടെറോസോയിക് യുഗത്തിലാണ് (Paleoproterozoic era) ഓക്സിജൻ സ്വതന്ത്രരൂപത്തിൽ ഭൂമിയിൽ ധാരാളമായി കാണപ്പെട്ടു തുടങ്ങിയത്. പരിണാമത്തിന്റെ ആദ്യഘട്ടങ്ങളിലെ അനേറോബിക് ജീവികളുടെ (Anaerobic organism) പ്രവർത്തനമാണ് ഇതിനു കാരണം. (ഇത്തരം ജീവികൾക്ക് ജീവിക്കാൻ ഓക്സിജൻ ആവശ്യമല്ലെന്നു മാത്രമല്ല, അവ ഓക്സിജനെ പുറത്തു വിടുകയും ചെയ്യുന്നു). അന്നു മുതലുള്ളതും ഇടക്ക് വംശനാശം വന്നതുമായ പലതരം ജീവജാലങ്ങളുടെയും പ്രവർത്തനമാണ് (ഉദാഹരണം: സസ്യങ്ങളിലെ പ്രകാശസംശ്ലേഷണം (photosynthesis)) അന്തരീക്ഷത്തിൽ ഓക്സിജൻ സുലഭമാവാനുള്ള കാരണം. സമുദ്രത്തിലെ ആൽഗകളാണ്, ഭൂമിയിലെ സ്വതന്ത്രരൂപത്തിലുള്ള ഓക്സിജന്റെ നാലിൽ മൂന്നു ഭാഗവും ഉണ്ടാക്കിയിരിക്കുന്നത്. ബാക്കി നാലിലൊന്ന് ഭൌമോപരിതലത്തിലുള്ള വൃക്ഷലതാദികളുടെ പ്രവർത്തനം മൂലവും.

പഠന ചരിത്രം

[തിരുത്തുക]

ആദ്യകാല പരീക്ഷണങ്ങൾ

[തിരുത്തുക]

ജ്വലനവും വായുവും തമ്മിലുള്ള ബന്ധത്തെക്കുറിച്ചുള്ള ആദ്യത്തെ അറിയപ്പെടുന്ന പരീക്ഷണങ്ങളിലൊന്ന് ബിസിഇ രണ്ടാം നൂറ്റാണ്ടിലെ മെക്കാനിക്സിലെ ഗ്രീക്ക് എഴുത്തുകാരനായ ഫിലോ ഓഫ് ബൈസാന്റിയമാണ് നടത്തിയത്. തന്റെ കൃതിയായ ന്യൂമാറ്റിക്കയിൽ, കത്തുന്ന മെഴുകുതിരിക്ക് മുകളിലൂടെ ഒരു പാത്രം മറിച്ചിടുകയും പാത്രത്തിന്റെ കഴുത്തിൽ വെള്ളം വലിക്കുകയും ചെയ്യുന്നത് കഴുത്തിലേക്ക് കുറച്ച് വെള്ളം കയറാൻ കാരണമായി എന്ന് ഫിലോ നിരീക്ഷിച്ചു. പാത്രത്തിലെ വായുവിന്റെ ഭാഗങ്ങൾ ക്ലാസിക്കൽ മൂലകമായ അഗ്നിയായി പരിവർത്തനം ചെയ്യപ്പെട്ടുവെന്നും അങ്ങനെ ഗ്ലാസിലെ സുഷിരങ്ങളിലൂടെ രക്ഷപ്പെടാൻ കഴിയുമെന്നും ഫിലോ തെറ്റായി അനുമാനിച്ചു. നിരവധി നൂറ്റാണ്ടുകൾക്ക് ശേഷം ലിയനാർഡോ ഡാവിഞ്ചി, ജ്വലനത്തിലും ശ്വസനത്തിലും വായുവിന്റെ ഒരു ഭാഗം ദഹിപ്പിക്കപ്പെടുന്നുവെന്ന് നിരീക്ഷിച്ചുകൊണ്ട് ഫിലോയുടെ കൃതികൾ നിർമ്മിച്ചു.

പതിനേഴാം നൂറ്റാണ്ടിന്റെ അവസാനത്തിൽ, ജ്വലനത്തിന് വായു ആവശ്യമാണെന്ന് റോബർട്ട് ബോയിൽ തെളിയിച്ചു. ഇംഗ്ലീഷ് രസതന്ത്രജ്ഞനായ ജോൺ മയോ (1641-1679) അഗ്നിക്ക് വായുവിന്റെ ഒരു ഭാഗം മാത്രമേ ആവശ്യമുള്ളൂ എന്ന് കാണിച്ചുകൊണ്ട് ഈ കൃതി പരിഷ്കരിച്ചു. ഒരു പരീക്ഷണത്തിൽ, എലിയോ കത്തിച്ച മെഴുകുതിരിയോ വെള്ളത്തിന് മുകളിൽ അടച്ച പാത്രത്തിൽ വയ്ക്കുന്നത് വെള്ളം ഉയർന്ന് വായുവിന്റെ വോളിയത്തിന്റെ പതിനാലിലൊന്ന് മാറ്റാൻ ഇടയാക്കി, തുടർന്ന് സബ്ജക്റ്റുകൾ കെടുത്തിക്കളയുന്നു. ഇതിൽ നിന്ന്, ശ്വാസോച്ഛ്വാസത്തിലും ജ്വലനത്തിലും നൈട്രോഎറിയസ് കഴിക്കുന്നതായി അദ്ദേഹം അനുമാനിച്ചു.

ചൂടാക്കുമ്പോൾ ആന്റിമണിയുടെ ഭാരം വർദ്ധിക്കുന്നതായി മയോ നിരീക്ഷിച്ചു, നൈട്രോഎറിയസ് അതുമായി ചേർന്നിരിക്കണമെന്ന് അനുമാനിച്ചു. ശ്വാസകോശം വായുവിൽ നിന്ന് നൈട്രോഎറിയസിനെ വേർതിരിച്ച് രക്തത്തിലേക്ക് കടത്തിവിടുന്നുവെന്നും ശരീരത്തിലെ ചില പദാർത്ഥങ്ങളുമായുള്ള നൈട്രോഎറിയസിന്റെ പ്രതിപ്രവർത്തനത്തിന്റെ ഫലമായാണ് മൃഗങ്ങളുടെ ചൂടും പേശികളുടെ ചലനവും ഉണ്ടാകുന്നതെന്നും അദ്ദേഹം കരുതി. ഇവയുടെയും മറ്റ് പരീക്ഷണങ്ങളുടെയും ആശയങ്ങളുടെയും വിവരണങ്ങൾ 1668-ൽ അദ്ദേഹത്തിന്റെ കൃതിയായ ട്രാക്റ്ററ്റസ് ഡ്യുവോയിൽ "ഡി റെസ്പിരേഷൻ" എന്ന ലഘുലേഖയിൽ പ്രസിദ്ധീകരിച്ചു.

ഫ്ലോജിസ്റ്റൺ സിദ്ധാന്തം

[തിരുത്തുക]

റോബർട്ട് ഹുക്ക്, ഓലെ ബോർച്ച്, മിഖായേൽ ലോമോനോസോവ്, പിയറി ബയേൻ എന്നിവരെല്ലാം 17-ഉം 18-ഉം നൂറ്റാണ്ടുകളിൽ നടത്തിയ പരീക്ഷണങ്ങളിൽ ഓക്‌സിജൻ ഉൽപ്പാദിപ്പിച്ചെങ്കിലും അവരാരും അതിനെ ഒരു രാസ മൂലകമായി തിരിച്ചറിഞ്ഞില്ല. ഫ്ളോജിസ്റ്റൺ സിദ്ധാന്തം എന്ന് വിളിക്കപ്പെടുന്ന ജ്വലനത്തിന്റെയും നാശത്തിന്റെയും തത്ത്വചിന്തയുടെ അതിപ്രസരം കാരണം ഇത് ഭാഗികമായിരിക്കാം, അത് ആ പ്രക്രിയകളുടെ പ്രിയപ്പെട്ട വിശദീകരണമായിരുന്നു.

1667-ൽ ജർമ്മൻ ആൽക്കെമിസ്റ്റ് ജെ.ജെ.ബെച്ചർ സ്ഥാപിക്കുകയും 1731-ഓടെ രസതന്ത്രജ്ഞനായ ജോർജ്ജ് ഏണസ്റ്റ് സ്റ്റാൾ പരിഷ്‌ക്കരിക്കുകയും ചെയ്‌ത ഫ്‌ളോജിസ്റ്റൺ സിദ്ധാന്തം എല്ലാ ജ്വലന വസ്തുക്കളും രണ്ട് ഭാഗങ്ങളായാണ് നിർമ്മിച്ചതെന്ന് പ്രസ്താവിച്ചു. ഫ്ളോജിസ്റ്റൺ എന്ന് വിളിക്കപ്പെടുന്ന ഒരു ഭാഗം, അതിൽ അടങ്ങിയിരിക്കുന്ന പദാർത്ഥം കത്തിച്ചപ്പോൾ അത് നൽകപ്പെട്ടു, അതേസമയം ഡീഫ്ലോഗിസ്റ്റേറ്റഡ് ഭാഗം അതിന്റെ യഥാർത്ഥ രൂപം അല്ലെങ്കിൽ കാൽക്സ് ആണെന്ന് കരുതപ്പെടുന്നു.

മരമോ കൽക്കരിയോ പോലെയുള്ള ചെറിയ അവശിഷ്ടങ്ങൾ അവശേഷിക്കുന്ന ഉയർന്ന ജ്വലന പദാർത്ഥങ്ങൾ കൂടുതലും ഫ്ളോജിസ്റ്റൺ കൊണ്ടാണ് നിർമ്മിച്ചതെന്ന് കരുതപ്പെടുന്നു; ഇരുമ്പ് പോലുള്ള ജ്വലനം ചെയ്യാത്ത പദാർത്ഥങ്ങളിൽ വളരെ കുറച്ച് മാത്രമേ അടങ്ങിയിട്ടുള്ളൂ. ഫ്ളോജിസ്റ്റൺ സിദ്ധാന്തത്തിൽ വായു ഒരു പങ്കുവഹിച്ചില്ല, അല്ലെങ്കിൽ ആശയം പരിശോധിക്കുന്നതിനായി പ്രാരംഭ അളവിലുള്ള പരീക്ഷണങ്ങളൊന്നും നടത്തിയില്ല; പകരം, എന്തെങ്കിലും കത്തുമ്പോൾ എന്താണ് സംഭവിക്കുന്നത് എന്ന നിരീക്ഷണങ്ങളെ അടിസ്ഥാനമാക്കിയുള്ളതാണ്, മിക്ക സാധാരണ വസ്തുക്കളും ഭാരം കുറഞ്ഞതായി തോന്നുകയും പ്രക്രിയയിൽ എന്തെങ്കിലും നഷ്ടപ്പെടുകയും ചെയ്യുന്നു.

കണ്ടെത്തൽ

[തിരുത്തുക]
കണ്ടുപിടുത്തത്തിൽ സാധാരണയായി ജോസഫ് പ്രീസ്റ്റ്ലിക്കാണ് മുൻഗണന നൽകുന്നത്.

പോളിഷ് ആൽക്കെമിസ്റ്റും തത്ത്വചിന്തകനും ഭിഷഗ്വരനുമായ മൈക്കൽ സെന്‌ഡിവോജിയസ് (മൈക്കൽ സെഡ്‌സിവോജ്) തന്റെ 'ഡി ലാപിഡ് ഫിലോസോഫോറം ട്രാക്റ്ററ്റസ് ഡുവോഡെസിം ഇ നാച്ചുറേ ഫോണ്ടെ എറ്റ് മാനുവലി എക്‌സ്പീരിയൻഷ്യ ഡിപ്രോംറ്റി' (1604) എന്ന തന്റെ കൃതിയിൽ വായുവിൽ അടങ്ങിയിരിക്കുന്ന ഒരു പദാർത്ഥത്തെ പരാമർശിക്കുന്നു. ജീവിതത്തിന്റെ,) പോളിഷ് ചരിത്രകാരനായ റോമൻ ബുഗാജിന്റെ അഭിപ്രായത്തിൽ, ഈ പദാർത്ഥം ഓക്സിജനുമായി സമാനമാണ്. 1598 നും 1604 നും ഇടയിൽ നടത്തിയ തന്റെ പരീക്ഷണങ്ങളിൽ, പൊട്ടാസ്യം നൈട്രേറ്റിന്റെ താപ വിഘടനം വഴി പുറത്തുവിടുന്ന വാതക ഉപോൽപ്പന്നത്തിന് തുല്യമാണ് ഈ പദാർത്ഥം എന്ന് സെൻഡിവോജിയസ് ശരിയായി തിരിച്ചറിഞ്ഞു. ബുഗാജിന്റെ വീക്ഷണത്തിൽ, ഓക്സിജന്റെ ഒറ്റപ്പെടലും, ജീവന്റെ ആ ഭാഗത്തെ വായുവിന്റെ ശരിയായ സംയോജനവും, സെൻഡിവോജിയസ് ഓക്സിജൻ കണ്ടെത്തിയതിന് മതിയായ തെളിവുകൾ നൽകുന്നു. എന്നിരുന്നാലും, സെൻഡിവോജിയസിന്റെ ഈ കണ്ടെത്തൽ അദ്ദേഹത്തിന്റെ പിൻഗാമിയായി വന്ന തലമുറകളിലെ ശാസ്ത്രജ്ഞരും രസതന്ത്രജ്ഞരും പലപ്പോഴും നിരാകരിച്ചിരുന്നു.

സ്വീഡിഷ് ഫാർമസിസ്റ്റ് കാൾ വിൽഹെം ഷീലെയാണ് ഓക്സിജൻ ആദ്യമായി കണ്ടെത്തിയത് എന്നും പൊതുവെ അവകാശപ്പെടുന്നു. 1771-72 ൽ മെർക്കുറിക് ഓക്സൈഡും (HgO) വിവിധ നൈട്രേറ്റുകളും ചൂടാക്കി അദ്ദേഹം ഓക്സിജൻ വാതകം ഉത്പാദിപ്പിച്ചു. വാതകത്തെ "ഫയർ എയർ" എന്ന് ഷീലെ വിളിച്ചു, കാരണം അത് ജ്വലനത്തെ പിന്തുണയ്ക്കുന്ന ഒരേയൊരു ഏജന്റ് ആയിരുന്നു. ട്രീറ്റീസ് ഓൺ എയർ ആൻഡ് ഫയർ എന്ന പേരിൽ ഒരു കൈയെഴുത്തുപ്രതിയിൽ അദ്ദേഹം ഈ കണ്ടെത്തലിന്റെ ഒരു വിവരണം എഴുതി, അത് 1775-ൽ അദ്ദേഹം തന്റെ പ്രസാധകന് അയച്ചു. ആ പ്രമാണം 1777-ൽ പ്രസിദ്ധീകരിച്ചു.

ലാവോസിയറുടെ സംഭാവന

[തിരുത്തുക]
അന്റോയിൻ ലാവോസിയർ ഫ്ളോജിസ്റ്റൺ സിദ്ധാന്തത്തെ അപകീർത്തിപ്പെടുത്തി.

ലാവോസിയർ ഓക്സിഡേഷനെക്കുറിച്ചുള്ള ആദ്യത്തെ മതിയായ അളവിലുള്ള പരീക്ഷണങ്ങൾ നടത്തുകയും ജ്വലനം എങ്ങനെ പ്രവർത്തിക്കുന്നു എന്നതിന്റെ ആദ്യത്തെ ശരിയായ വിശദീകരണം നൽകുകയും ചെയ്തു. 1774-ൽ ആരംഭിച്ച ഇവയും സമാനമായ പരീക്ഷണങ്ങളും അദ്ദേഹം ഉപയോഗിച്ചു, ഫ്ളോജിസ്റ്റൺ സിദ്ധാന്തത്തെ അപകീർത്തിപ്പെടുത്താനും പ്രീസ്റ്റ്ലിയും ഷീലും കണ്ടെത്തിയ പദാർത്ഥം ഒരു രാസ മൂലകമാണെന്ന് തെളിയിക്കാനും.

ഗുണങ്ങൾ

[തിരുത്തുക]
പ്രമാണം:Liquid Oxygen.gif
ദ്രാവക ഓക്സിജൻ

അന്തരീക്ഷവായുവിന്റെ 21%-വും ഓക്സിജനാണ്. ഓക്സിജന്റെ പ്രതീകം O-യും അണുസംഖ്യ 8 ഉം ആണ്. ഓക്സിജൻ ദ്വയാണുതന്മാത്രകളായാണ് സ്വതന്ത്രരൂപത്തിൽ പ്രകൃതിയിൽ കാണപ്പെടുന്നത്. ഈ തന്മാത്രയെ ഡയോക്സിജൻ (dioxygen) എന്നും പറയാറുണ്ട്. O2 എന്നതാണ് ഇതിന്റെ രാസവാക്യം. ഇത്തരം തന്മാത്രകളിൽ രണ്ടു ഓക്സിജൻ അണുക്കൾ തമ്മിൽ ഇരട്ട സഹസംയോജകബന്ധമാണ് ഉള്ളത്.

ഓക്സിജന്റെ ഖര, ദ്രാവക രൂപങ്ങൾക്ക് ഇളം നീലനിറമാണ് ഉള്ളത്. ദ്രവവായുവിനെ ആംശിക സ്വേദനം (fractional distillation) നടത്തിയാണ് ദ്രവ ഓക്സിജൻ നിർമ്മിക്കുന്നത്. ഇത് കാന്തത്താൽ ശക്തമായി ആകർഷിക്കപ്പെടുന്ന ഒരു വസ്തു കൂടിയാണ്. ഓക്സിജൻ, വളരെ ചെറിയ അളവിൽ ജലത്തിൽ ലയിക്കുന്നു. ഇങ്ങനെ ജലത്തിൽ ലയിച്ചു ചേർന്ന ഓക്സിജനാണ് ജലജീവികളുടെ ജീവന് ആധാരം.

അലോട്രോപ്പുകൾ

[തിരുത്തുക]
സാധാരണ ഓക്സിജൻ തന്മാത്രയുടെ (ഡയോക്സിജൻ) ഘടന

പ്രപഞ്ചത്തിൽ ഓക്സിജന്റെ പലതരത്തിലുള്ള തന്മാത്രാ രൂപങ്ങൾ ഉണ്ട്. ഭൂമിയിൽ സാധാരണ കാണപ്പെടുന്നത് ഡയോക്സിജൻ എന്നും വിളിക്കപ്പെടുന്ന ദ്വയാണുതന്മാത്രകളാണ് (O2). സാധാരണ താപ മർദ്ദ സാഹചര്യങ്ങളിൽ ഏറ്റവും സ്ഥിരതയുള്ള തന്മാത്രാരൂപവും ഇതാണ്.

ഓസോൺ തന്മാത്രയുടെ ഘടന

മൂന്നു ഓക്സിജൻ അണുക്കൾ ചേർന്ന തന്മാത്രാരൂപമാണ് ഓസോൺ (Ozone). O3 എന്നതാണ് ഇതിന്റെ തന്മാത്രാ സമവാക്യം. തീക്ഷ്ണമായ ഗന്ധമുള്ള ഒരു വിഷവാതകമാണ് ഇത്. ഡയോക്സിജനെ അപേക്ഷിച്ച് സ്ഥിരതയും കുറവാണ്. ഹ്രസ്വതരംഗ അൾട്രാവയലറ്റ് വികിരണത്തിന്റെ ഫലമായി, അന്തരീക്ഷത്തിന്റെ മുകളിലത്തെ തട്ടുകളിൽ ഈ വാതകം രൂപം കൊള്ളുന്നുണ്ട്. ഭൂമിക്ക് അൾട്രാവയലറ്റ് രശ്മികളിൽ നിന്നുള്ള ഒരു കവചമായും ഇത് വർത്തിക്കുന്നു. ശരീരത്തിൽ രോഗപ്രതിരോധത്തിനായും ഓസോൺ ഉൽപ്പാദിപ്പിക്കപ്പെടുന്നുണ്ട്. ഓസോണിന്റെ ഖര ദ്രാവകരൂപങ്ങൾക്ക്, ഡയോക്സിജന്റേതിനേക്കാൾ കടുത്ത നീലനിറമാണ് ഉള്ളത്. കൂടാതെ ഇവ അസ്ഥിരവും സ്ഫോടനം ഉണ്ടാക്കുന്നവയുമാണ്.

നാലു ഓക്സിജൻ ആണുക്കൾ അടങ്ങിയ അർധസ്ഥിരതയുള്ള തന്മാത്രാരൂപമാണ് ടെട്രാ‍ഓക്സിജൻ (tetraoxygen). എട്ടു ഓക്സിജൻ ആണുക്കൾ അടങ്ങിയ കടുംചുവപ്പു നിറമുള്ള ‍ഒരു ഖരവസ്തുവാണ് O8. ഡയോക്സിജൻ തന്മാതകളെ 20Pa മർദ്ദത്തിന് വിധേയമാക്കിയാണ് ഇത് നിർമ്മിക്കുന്നത്. O2,O3 എന്നിവയെ അപേക്ഷിച്ച് ശക്തിയേറിയ ഓക്സീകാരിയാണ് ഇത്. റോക്കറ്റുകളിൽ ഇന്ധനമായി ഇതിനെ ഉപയോഗിക്കുന്നതിനുള്ള പഠനങ്ങൾ നടന്നു വരികയാണ്.

ഉപയോഗങ്ങൾ

[തിരുത്തുക]

ശ്വസനവും അതു സംബന്ധിച്ച മറ്റുപയോഗങ്ങളുമാണ് ഓക്സിജന്റെ ഏറ്റവും പ്രധാനമായ ഉപയോഗമേഖല. മറ്റുപയോഗങ്ങൾ:

  • ചികിത്സക്ക്-കൃത്രിമ ശ്വാസോച്ഛാസം നൽകുന്നതിന്, നൈട്രസ് ഓക്സൈഡുമായി ചേർത്ത് വേദനസംഹാരിയായും, അനസ്തേഷ്യക്കായും ഉപയോഗിക്കുന്നു.
  • കുറഞ്ഞ വായുമർദ്ദമുള്ള ഇടങ്ങളിൽ ശ്വസന സഹായത്തിന് - മലകയറുന്നവർക്കും, വായു മർദ്ദം ക്രമീകരിക്കാത്ത വിമാനങ്ങളിൽ സഞ്ചരിക്കുന്നവർക്ക്.
  • മുങ്ങൽ വിദഗ്ദ്ധർക്ക്
  • വെൽഡിങ് - വെൽഡിങ്ങിനുപയോഗിക്കുന്ന ഓക്സി-അസെറ്റിലിൻ വാതകത്തിലെ ഒരു ഘടകമാണ് ഓക്സിജൻ. അസെറ്റിലിനെ കത്താൻ സഹായിക്കുക എന്നതാണ് ഇതിന്റെ ധർമ്മം
  • ദ്രവ ഓക്സിജൻ റോക്കറ്റുകളിൽ ഉപയോഗിക്കുന്നു - ഹൈഡ്രജനും ഓക്സിജനും ചേർന്നാണ് ഇവിടെ ഊർജ്ജോൽപ്പാദനം നടക്കുന്നത്.
  • ഉരുക്ക്, മെഥനോൾ എന്നിവയുടെ നിർമ്മാണത്തിന്

മെഡിക്കൽ ഓക്സിസിജൻ

[തിരുത്തുക]

വ്യാവസായിക ആവശ്യങ്ങൾക്കും ചികിത്സാ ആവശ്യങ്ങൾക്കുമായി അന്തരീക്ഷത്തിൽനിന്ന് ഓക്സിജൻ വേർതിരിച്ചെടുക്കുന്നു. ആംശിക സ്വേദനം എന്ന പ്രക്രിയയിലൂടെയാണ് പ്രധാനമായും ഓക്സിജൻ വേർതിരിക്കുന്നത്. ലളിതമായി പറഞ്ഞാൽ ഈ പ്രക്രിയ ഇപ്രകാരമാണ്. അന്തരീക്ഷവായുവിന്റെ 99 ശതമാനം ഭാഗവും ഓക്സിജനും നൈട്രജനും ചേർന്നതാണല്ലോ (21ശതമാനം ഓക്സിജനും 78ശതമാനം നൈട്രജനും). അതിമർദത്തിൽ വായുവിനെ ദ്രവരൂപത്തിലാക്കുന്നു. ഒരു പ്രത്യേക മർദത്തിൽ ഓക്സിജൻ ദ്രാവകാവസ്ഥയിൽ എത്തുകയും നൈട്രജൻ വാതകാവസ്ഥയിൽ തുടരുകയും ചെയ്യുന്നു.ഇതിൽനിന്ന് ദ്രാവക ഓക്സിജനെ വേർതിരിച്ചെടുക്കുന്നു. നൈട്രജനെ അരിച്ചുമാറ്റി വേർതിരിക്കുന്ന പ്രക്രിയയിലൂടെയും ഓക്സിജൻ ഉത്പാദിപ്പിക്കുന്നുണ്ട്. ഓക്സിജനെ ദ്രാവകാവസ്ഥയിൽ വലിയ ടാങ്കറുകളിലും സിലിൻഡറുകളിലുമായി സൂക്ഷിക്കുന്നു. 840 ലിറ്റർ ഓക്സിജൻ ദ്രാവകമാക്കി മാറ്റുമ്പോൾ അത് ഒരു ലിറ്ററായി ചുരുങ്ങുന്നു.[1]

ചരിത്രം

[തിരുത്തുക]

ഓക്സിജൻ എന്ന വാക്ക്, അമ്ലം അല്ലെങ്കിൽ മൂർച്ചയേറിയ എന്നർത്ഥമുള്ള ഓക്സിസ് (oxys) എന്നും ജനകം എന്നർത്ഥമുള്ള ജെനിസ് (genēs) എന്ന രണ്ടു ഗ്രീക്ക് പദങ്ങളിൽ നിന്നും ഉണ്ടായതാണ്. പതിനെട്ടാം നൂറ്റാണ്ടിന്റെ ആദ്യപാദത്തിൽ ഫ്രഞ്ചു ശാസ്ത്രജ്ഞനായിരുന്ന ആന്റൺ ലാവോസിയർ ആണ് അമ്ലജനകം എന്നർത്ഥത്തിൽ ഈ മൂലകത്തിനു പേരിട്ടത്. എല്ലാ അമ്ലങ്ങളിലും ഓക്സിജൻ അടങ്ങിയിരിക്കുന്നു എന്ന തെറ്റിദ്ധാരണയാണ് അദ്ദേഹത്തെ ഇതിലേക്കു നയിച്ചത്.


16-ആം നൂറ്റാണ്ടിലെ പോളിഷ് ആൽകെമിസ്റ്റും തത്വചിന്തകനുമായ മൈക്കൽ സെന്റിവോഗ്സ് ആണ് ഓക്സിജനെക്കുറിച്ച് ആദ്യമായി പരാമർശിച്ചിട്ടുള്ളത്.


1773-ൽ സ്വീഡിഷ് ഫാർമസിസ്റ്റ് ആയ കാൾ വിൽഹെം ഷീലി‍ ഇതിനെ കണ്ടെത്തിയെങ്കിലും തന്റെ കണ്ടുപിടിത്തം പ്രസിദ്ധീകരിച്ചിരുന്നില്ല. 1774 ഓഗസ്റ്റ് 1 ന് ജോസഫ് പ്രീസ്റ്റ്ലി സ്വതന്ത്രമായി ഓക്സിജൻ കണ്ടെത്തി. പ്രീസ്റ്റ്ലി തന്റെ കണ്ടുപിടിത്തം 1775ൽ പ്രസിദ്ധീകരിച്ചു, എന്നാൽ 1777ൽ മാത്രമാണ് ഷീലി‍ ഇത് പ്രസിദ്ധീകരിച്ചത്. മെർക്കുറിക് ഓക്സൈഡിനെ ചൂടാക്കിയാണ് രണ്ടു പേരും ഓക്സിജനെ വേർതിരിച്ചത്. കത്തുന്നതിനെ സഹായിക്കുന്നതിനാൽ ഷീലി ഇതിനെ ‘അഗ്നിവാതകം‘ (fire air) എന്നു വിളിച്ചു. ജന്തു ജീവിതത്തിന് അത്യന്താപേഷിതമായതിനാൽ പിന്നീട് ഇത് ‘ജീവവായു‘ (vital air) എന്നായി മാറി.


പ്രീസ്റ്റ്ലിയുടെ പ്രസിദ്ധീകരണത്തിനു ശേഷം 1775-ലാണ് ലാവോസിയർ ഓക്സിജനു നാമകരണം നടത്തിയത്.

പ്രപഞ്ചത്തിൽ ഏറ്റവും കൂടുതലുള്ള മൂന്നാമത്തെ മൂലകമാണ് ഓക്സിജൻ. ഹൈഡ്രജനും ഹീലിയവും യഥാക്രമം ഒന്നും രണ്ടും സ്ഥാനങ്ങളീൽ നിൽക്കുന്നു. ഭൂവൽക്കത്തിൽ ഏറ്റവും കൂടുതലുള്ള മൂലകവും ഇതാണ്. ഭൂവൽക്കത്തിന്റെ ആകെ ഭാരത്തിന്റെ 49% ആണ് ഇതിന്റെ അളവ്. ഭൂമിയെ മൊത്തമായെടുത്താൽ അതിൽ ഓക്സിജന്റെ സ്ഥാനം രണ്ടാമതാണ് ഭൂമിയുടെ ആകെ ഭാരത്തിന്റെ 28% ഭാഗം ഓക്സിജനാണ്. സമുദ്രത്തിലേയും ഏറ്റവും അധികമുള്ള ഘടകവും ഇതു തന്നെയാണ് (86% ഭാരം). അന്തരീക്ഷവായുവിൽ ഇതിന്റെ സ്ഥാനം നൈട്രജനു പിന്നിൽ രണ്ടാമതും ആണ് (20.95%).


ഓക്സിജൻ സ്വതന്ത്രരൂപത്തിൽ അന്തരീക്ഷത്തിൽ മാത്രമല്ല, മറിച്ച് ജലത്തിൽ അലിഞ്ഞ നിലയിലും സ്ഥിതിചെയ്യുന്നു. അന്തരീക്ഷമർദ്ദത്തിൽ 25°സെ. താപനിലയിൽ ഒരു ലിറ്റർ വെള്ളത്തിൽ 6.04 ക്യുബിക് സെന്റീമീറ്റർ (8.63 മില്ലി ഗ്രാം) ഓക്സിജൻ അലിഞ്ഞു ചേരുന്നു. കടൽജലത്തിൽ ഇത് 4.9 ക്യു.സെ.മീ.(7.0 മി.ഗ്രാം) മാത്രമാണ്. താപനില 0°സെൽ‌ഷ്യസിലെത്തിച്ചാൽ ഇത് യഥാക്രമം 10.29 ക്യു.സെ.മീ, 8.0 ക്യു.സെ.മീ എന്നിങ്ങനെയായി വർദ്ധിക്കുന്നു. ഇക്കാരണം കൊണ്ട് തന്നെ ധ്രുവപ്രദേശങ്ങളിലെ സമുദ്രജലത്തിൽ ഓക്സിജന്റെ അളവ് കൂടുതലാണ്. അതുകൊണ്ടു തന്നെ അവിടങ്ങളിൽ ജലജീവികളുടെ എണ്ണവും താരതമ്യേന കൂടുതലാണ്.

സംയുക്തങ്ങൾ

[തിരുത്തുക]

ഓക്സിജന്റെ ഇലക്ട്രോനെഗറ്റിവിറ്റി വളരെ കൂടുതലായതിനാൽ മിക്കവാറും മൂലകങ്ങളുമായും ഇത് രാസപ്രവർത്തനത്തിലേർപ്പെടുന്നു. ഉൽകൃഷ്ടവാതകങ്ങൾ, ഹാലൊജനുകൾ, വെള്ളി, സ്വർണ്ണം എന്നിവ മാത്രമാണ് ഓക്സിജനുമായി നേരിട്ട് പ്രവർത്തിക്കാത്ത മൂലകങ്ങൾ. നൈട്രജൻ, റോഡിയം, പലേഡിയം, ഇറിഡിയം, പ്ലാറ്റിനം എന്നീ മൂലകങ്ങളുടെ ഓക്സൈഡുകളുടെ നിർമ്മാണവും താരതമ്യേന പ്രയാസമേറിയതാണ്. ഉൽകൃഷ്ടവാതകങ്ങളും, സ്വർണ്ണവും ഒഴികെ മറ്റെല്ലാ മൂലകങ്ങളും ഓസോണുമായി നേരിട്ട് പ്രവർത്തിക്കുന്നു

ഓക്സിജന്റെ ഏറ്റവും സാധാരണ സംയുക്തം ജലം (H2O) തന്നെയാണ്.. ജലത്തെക്കൂടാതെ, കാർബൺ ഡൈ ഓക്സൈഡ്(CO2, വിവിധതരം ആൽക്കഹോളുകൾ(R-OH),കാർബോണിലുകൾ (R-CO-H/R-CO-R), കാർബോളിക് അമ്ലങ്ങൾ(R-COOH) എന്നിവയെല്ലാം ഓക്സിജന്റെ പ്രധാന സംയുക്തങ്ങളാണ്. ഓക്സിജൻ അടങ്ങിയ റാഡികലുകളായ ക്ലോറേറ്റ്(ClO3), പെർക്ലോറേറ്റ്(ClO4) , ക്രോമേറ്റ്(CrO42−), ഡൈക്രോമേറ്റ്(Cr2O72−), പെർമാംഗനേറ്റ്(MnO4), നൈട്രേറ്റ്(NO3) എന്നിവയൊക്കെ ശക്തിയേറിയ ഓക്സീകാരികളാണ്. ഇരുമ്പ് അന്തരീക്ഷവായുവുമായി പ്രവർത്തിച്ചുണ്ടാകുന്ന തുരുമ്പ് നമുക്ക് സുപരിചിതമായ ഒന്നാണ്.

  1. https:www.mathrubhumi.com/mobile/print-edition/vidya/vidya-1.5621182
"https://ml.wikipedia.org/w/index.php?title=ഓക്സിജൻ&oldid=3693237" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്