സൂര്യൻ

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
(Sun എന്ന താളിൽ നിന്നും തിരിച്ചുവിട്ടതു പ്രകാരം)
സൂര്യൻ Sun symbol.svg
സൂര്യന്റെ എക്സ്-റേ ചിത്രം
നിരീക്ഷണവിവരം
ഭൂമിയിൽ നിന്നുള്ള
ശരാശരി ദൂരം
1.496×108 km
പ്രകാശവേഗത്തിൽ 8.317 മിനിറ്റ് (499 സെക്കന്റ്)
ദൃശ്യകാന്തിമാനം (V) −26.74 [1]
കേവലകാന്തിമാനം 4.85 [2]
സ്പെക്ട്രൽ വർഗ്ഗീകരണം G2V
മെറ്റാലിസിറ്റി Z = 0.0177 [3]
കോണീയ വ്യാസം 31.6′ – 32.7′ [4]
ഭ്രമണപഥത്തിന്റെ സവിശേഷതകൾ
ക്ഷീരപഥകേന്ദ്രത്തിൽ നിന്നുള്ള ദൂരം ~2.5×1017 km
26,000 light-years
പരിക്രമണകാലം (2.25–2.50) × 108 a
പ്രവേഗം ~220 km/s
(orbit around the center of the Galaxy)

~20 km/s
(relative to average velocity of other stars in stellar neighborhood)
Physical characteristics
ശരാശരി വ്യാസം 1.392×106 km [1]
109 × Earths
മധ്യരേഖാ ആരം 6.955×105 km [5]
109 × Earth[5]
മധ്യരേഖാ വൃത്തപരിധി 4.379×106 km [5]
109 × Earth[5]
Flattening 9×10−6
ഉപരിതല വിസ്തീർണ്ണം 6.0877×1012 km2 [5]
11,990 × Earth[5]
വ്യാപ്തം 1.412×1018 km3 [5]
13,00,000 × Earth
പിണ്ഡം 1.9891×1030 kg [1]
3,32,900 × Earth[5]
ശരാശരി സാന്ദ്രത 1.408×103 kg/m3 [1][5][6]
വിവിധ സാന്ദ്രതകൾ കാമ്പ്: 1.5×105 kg/m3
പ്രഭാമണ്ഡലം (താഴ്ന്നത്): 2×10−4 kg/m3
വർണ്ണമണ്ഡലം (താഴ്ന്നത്): 5×10−6 kg/m3
(ശരാശരി) കൊറോണ: 1×10−12 kg/m3 [7]
മധ്യരേഖാ ഉപരിതല ഗുരുത്വം 274.0 m/s2 [1]
27.94 g
28 × Earth[5]
നിഷ്ക്രമണപ്രവേഗം
(ഉപരിതലത്തിലേത്)
617.7 km/s [5]
55 × Earth[5]
ഉപരിതലതാപനില
5,778 K [1]
കൊറോണയുടെ താപനില ~5×106 K
കാമ്പിലെ
താപനില
~15.7×106 K [1]
Luminosity (Lsol) 3.846×1026 W [1]
~3.75×1028 lm
~98 lm/W efficacy
Mean Intensity (Isol) 2.009×107 W·m−2·sr−1
Rotation characteristics
Obliquity 7.25° [1]
(to the ecliptic)
67.23°
(to the galactic plane)
ഉത്തരധ്രുവത്തിന്റെ[8]
റൈറ്റ് അസൻഷൻ
286.13°
19h 4min 30s
ഉത്തരധ്രുവത്തിന്റെ
ഡെക്ലിനേഷൻ
+63.87°
63°52' North
സിഡീരിയൽ ഭ്രമണകാലം
(at 16° latitude)
25.38 days [1]
25d 9h 7min 13s [8]
(at equator) 25.05 days [1]
(at poles) 34.3 days [1]
മധ്യരേഖാ
ഭ്രമണപ്രവേഗം
7.189×103 km/h [5]
പ്രഭാമണ്ഡലനിർമ്മിതി (പിണ്ഡാടിസ്ഥാനത്തിൽ)
ഹൈഡ്രജൻ 73.46%[9]
ഹീലിയം 24.85%
ഓക്സിജൻ 0.77%
കാർബൺ 0.29%
ഇരുമ്പ് 0.16%
ഗന്ധകം 0.12%
നിയോൺ 0.12%
നൈട്രജൻ 0.09%
സിലിക്കൺ 0.07%
മഗ്നീഷ്യം 0.05%

ഭൂമി ഉൾപ്പെടുന്ന ഗ്രഹതാരസഞ്ചയമായ സൗരയൂഥത്തിന്റെ കേന്ദ്രമാണ്‌ സൂര്യൻ എന്ന നക്ഷത്രം. ഏതാണ്ട് 13,92,000 കിലോമീറ്ററാണു് സൂര്യന്റെ വ്യാസം. സൗരയൂഥത്തിന്റെ ആകെ പിണ്ഡത്തിന്റെ 99.86 ശതമാനവും സൂര്യനിലാണ്‌; പിണ്ഡത്തിന്റെ ബാക്കിവരുന്ന ഭാഗം ഗ്രഹങ്ങൾ, ഛിന്നഗ്രഹങ്ങൾ, ഉൽക്കകൾ, ധൂമകേതുക്കൾ ധൂളികൾ എന്നിവയിലാണ്‌‌‌.[10] സൗരപിണ്ഡത്തിന്റെ നാലിൽ മൂന്നുഭാഗവും ഹൈഡ്രജനാണ്‌, ബാക്കിയുള്ളതിൽ ഭൂരിഭാഗവും ഹീലിയവുമാണ്‌. രണ്ട് ശതമാനത്തിൽ താഴെയേ ഇരുമ്പ്, ഓക്സിജൻ, കാർബൺ, നിയോൺ എന്നിവയടക്കമുള്ള മറ്റ് മൂലകങ്ങൾ വരുന്നുള്ളൂ.[11]

ഭൂമിയുടെ അന്തരീക്ഷത്തിൽ സംഭവിക്കുന്ന വിസരണം മൂലം സൂര്യൻ മഞ്ഞനിറത്തിൽ കാണപ്പെടുന്നുവെങ്കിലും സൂര്യന്റെ യഥാർത്ഥനിറം വെള്ളയാണ്‌.[12] നക്ഷത്രങ്ങളുടെ സ്പെക്ട്രൽ വർഗ്ഗീകരണമനുസരിച്ച് സൂര്യനെ G2V എന്ന സ്പെക്ട്രൽ ക്ലാസിലാണ്‌ ഉൾപ്പെടുത്തിയിരിക്കുന്നത്, അതുപ്രകാരം സൂര്യനെ ഒരു മഞ്ഞ നക്ഷത്രമായി സൂചിപ്പിക്കുന്നു, സൂര്യന്റെ വികിരണങ്ങളിൽ ഭൂരിഭാഗവും ദൃശ്യവർണ്ണരാജിയിലെ മഞ്ഞ-പച്ച എന്നിവയ്ക്കിടയിലുള്ള വികിരണങ്ങളായതിനാലാണിത്.[13] ഇവിടെ G2 സൂചിപ്പിക്കുന്നത് ഉപരിതലതാപനില 5,780 K (5,510 °C) എന്നാണ്‌, V (റോമൻ അക്കം) സൂചിപ്പിക്കുന്നത് മറ്റ് ഭൂരിഭാഗം നക്ഷത്രങ്ങളെപ്പോലെ ഹൈഡ്രജൻ അണുകേന്ദ്രങ്ങളെ ഹീലിയമാക്കുന്ന പ്രക്രിയയിലൂടെ ഊർജ്ജോല്പാദനം നടത്തുന്ന മുഖ്യശ്രേണിയിൽപ്പെട്ട ഒരു നക്ഷത്രം എന്നാണ്‌. അപ്രധാനവും ചെറുതുമായ ഒരു നക്ഷത്രമാണെങ്കിലും സൂര്യൻ അതിന്റെ താരാപഥമായ ക്ഷീരപഥത്തിലെ 85 ശതമാനത്തോളം നക്ഷത്രങ്ങളേക്കാളും തിളക്കമുള്ളതാണ്‌, ക്ഷീരപഥത്തിലെ ഭൂരിഭാഗം നക്ഷത്രങ്ങളും ചുവപ്പുകുള്ളന്മാർ ആയതിനാലാണിത്.[14][15] സൂര്യന്റെ കേവലകാന്തിമാനം ഏതാണ്ട് 4.8 ന്‌ അടുത്താണെന്ന് കണക്കാക്കപ്പെട്ടിരിക്കുന്നു.[16][17] സൂര്യന്റെ കൊറോണ അന്തരീക്ഷത്തിലേക്ക് തുടച്ചയായി വ്യാപിച്ച് ചാർജ്ജ് ചെയ്യപ്പെട്ട കണികകളുടെ അതിവേഗതയിലുള്ള ഉയർന്ന പ്രവാഹമായ സൗരക്കാറ്റ് സൃഷ്ടിക്കുന്നു, 100 ആസ്ട്രോണമിക്കൽ യൂണിറ്റ് ദൂരം വരെ ഇത്തരത്തിലുള്ള സൗരക്കാറ്റുകൾ എത്തിച്ചേരുന്നു. നക്ഷത്രന്തരീയ മാധ്യമങ്ങളുമായി സൗരക്കാറ്റ് കൂട്ടിമുട്ടുന്നതുവഴി രൂപപ്പെടുന്ന ഹീലിയോസ്ഫിയർ സൗരയൂഥത്തിലെ ഏറ്റവും വലിയ ഘടനയാണ്‌.[18][19]

സമീപ ബബിൾ സോണിലെ നക്ഷത്രാന്തരീയ മേഘങ്ങളിലൂടെ സഞ്ചരിച്ചുകൊണ്ടിരിക്കുകയാണ്‌ സൂര്യൻ, ക്ഷീരപഥത്തിന്റെ ഓറിയോൺ ഭുജത്തിലാണ്‌ ഈ ബബിൾ സോണുള്ളത്. ഏറ്റവും അടുത്തുള്ള 5 നക്ഷത്രവ്യവസ്ഥകളിൽ പിണ്ഡം കൊണ്ട് സൂര്യൻ നാലാം സ്ഥാനത്താണ്‌.[20] ക്ഷീരപഥത്തിന്റെ കേന്ദ്രത്തിൽ നിന്നും 24,000 നും 26,000 നും ഇടയിൽ പ്രകാശവർഷങ്ങൾ ദൂരെയായി അതിനെ പരിക്രമണം ചെയ്തുകൊണ്ടിരിക്കുകയാണ്‌ സൂര്യൻ. ഇത്തരത്തിൽ താരാപഥ ഉത്തരധ്രുവത്തിൽ നിന്നും വീക്ഷിക്കപ്പെടുന്ന അവസ്ഥയിൽ ഘടികാര ദിശയിലുള്ള ഒരു പരിക്രമണം പൂർത്തിയാക്കാൻ 22.5 മുതൽ 25 വരെ കോടി വർഷങ്ങൾ എടുക്കും.

സൂര്യനിൽ നിന്നും ഭൂമിയിലേക്കുള്ള ശരാശരി ദൂരം 14.96 കോടി കിലോമീറ്റർ ആണ്‌ (അതായത് ഒരു ആസ്ട്രോണമിക്കൽ യൂണിറ്റ് (AU)), ജനുവരിയിൽ ഉപസൗരത്തിലായിരിക്കുന്നതിനും ജൂലൈയിൽ അപസൗരത്തിലേക്ക് നീങ്ങിക്കൊണ്ടിരിക്കുന്നതിനിടയിൽ ഈ ദൂരത്തിന്‌ മാറ്റം വരും.[21] ഇതിനിടയിലെ ശരാശരി ദൂരത്തിൽ പ്രകാശം സൂര്യനിൽ നിന്നും ഭൂമിയിലേക്ക് എത്തിച്ചേരാൻ ഏകദേശം 8 മിനുട്ടും 19 സെക്കന്റും എടുക്കും. സൂര്യപ്രകാശത്തിലടങ്ങിയ ഊർജ്ജത്തെ ഉപയോഗപ്പെടുത്തിക്കൊണ്ടുള്ള പ്രകാശസംശ്ലേഷണം എന്ന പ്രക്രിയയാണ്‌ ഭൂമിയിലെ ഏതാണ്ടെല്ലാ ജീവനേയും നിലനിർത്തുന്നത്,[22] ഭൂമിയിലെ കാലാവസ്ഥയെ നിയന്ത്രിക്കുന്നതും സൂര്യനിൽ നിന്നുള്ള ഊർജ്ജമാണ്. സൂര്യന്റെ ഭൂമിയുടെ മേലുള്ള സ്വാധീനം നൂറ്റാണ്ടുകൾക്ക് മുൻപേ മനുഷ്യൻ തിരിച്ചറിഞ്ഞിരുന്നു, ഹിന്ദുമതം ഉൾപ്പെടെയുള്ള പൗരാണികമതങ്ങൾ സൂര്യനെ ദൈവമായി കണക്കാക്കുകയും ചെയ്യുന്നു. പതുക്കെയാണ്‌ സൂര്യനെ കുറിച്ചുള്ള കൃത്യമായ ശാസ്ത്രീയ അറിവുകൾ മനുഷ്യൻ ആർജ്ജിച്ചെടുത്തത്. പത്തൊൻപതാം നൂറ്റാണ്ടുവരെ ജ്യോതിശാസ്ത്രജ്ഞർക്ക് പോലും സൂര്യന്റെ ഭൗതികഘടനയെക്കുറിച്ചും ഊർജ്ജത്തിന്റെ ഉറവിടത്തെക്കുറിച്ചും അറിവുണ്ടായിരുന്നില്ല. സൂര്യനെക്കുറിച്ചുള്ള അറിവുകൾ ഇപ്പോഴും പൂർണ്ണമല്ല, സൂര്യൻ പ്രകടിപ്പിക്കുന്ന പല അസ്വാഭാവികപ്രതിഭാസങ്ങളും ഇപ്പോഴും വിശദീകരിക്കപ്പെടാതെ നിലനിൽക്കുന്നുണ്ട്.

ഉള്ളടക്കം

സ്വഭാവഗുണങ്ങൾ[തിരുത്തുക]

സ്റ്റീരിയോ ബി ബഹിരാകാശപേടകത്തിന്റെ ക്രമീകരണവേളയിൽ പകർത്തപ്പെട്ട സൂര്യപശ്ചാത്തലത്തിലെ ചന്ദ്രന്റെ സംതരണം.
സൂര്യന്റെ ഘടന വ്യക്തമാക്കുന്ന ഒരു ചിത്രം:
1. കാമ്പ്
2. വികിരണമേഖല
3. സം‌വഹനമേഖല
4. പ്രഭാമണ്ഡലം
5. വർണ്ണമണ്ഡലം
6. കൊറോണ
7. സൗരകളങ്കം
8. ഗ്രാന്യൂളുകൾ
9. പ്രോമിനൻസ്

മുഖ്യശ്രേണിയിൽപ്പെട്ട ഒരു G-type നക്ഷത്രമാണ് സൂര്യൻ. ഏതാണ്ട് പൂർണ്ണ ഗോളാകാരമാണ്‌ സൂര്യൻ‌, വ്യാസത്തിൽ ഏകദേശം 9 ദശലക്ഷത്തിലൊരുഭാഗത്തോളം ധ്രുവഭാഗം മധ്യരേഖഭാഗവുമായി വ്യത്യാസമുണ്ട്,[23] അതായത് ഈ വ്യത്യാസം വെറും 10 കി.മീ. മാത്രമേ വരുന്നുള്ളൂ. പ്ലാസ്മാവസ്ഥയിൽ ആയതിനാൽ തന്നെ സൂര്യന്റെ മധ്യരേഖാഭാഗം ധ്രുവഭാഗങ്ങളേക്കാളും വേഗത്തിൽ ഭ്രമണം ചെയ്യുന്നുണ്ട്, ഇത് ഡിഫറെൻഷ്യൽ റൊട്ടേഷൻ എന്നറിയപ്പെടുന്നു, കാമ്പിൽ നിന്നും പുറത്തേക്ക് വരുതോറും താപനിലയിൽ ഗണ്യമായ മാറ്റം വരുന്നതിനാൽ പദാർത്ഥങ്ങളുടെ സം‌വഹനം നടക്കുന്നതുവഴിയും പദാർത്ഥങ്ങൾ നീങ്ങുന്നതുവഴിയുമാണിങ്ങനെ സംഭവിക്കുന്നത്. ഈ പദാർത്ഥനീക്കങ്ങളിലാണ്‌ സൂര്യന്റെ ക്രാന്തിവൃത്തപരമായ ഉത്തരധ്രുവത്തിൽ നിന്നുമുള്ള വീക്ഷണത്തിൽ എതിർ ഘടികാരദിശയിലുള്ള കോണീയ സം‌വേഗം കുടികൊള്ളുന്നത്. ഈ ഭ്രമണങ്ങളുടെ കാലദൈർഘ്യം മധ്യരേഖായിടങ്ങളിൽ 25.6 ദിവസവും ധ്രുവങ്ങളിൽ 33.5 ദിവസവുമാണ്‌. പക്ഷേ ഭൂമി സഞ്ചരിച്ചുകൊണ്ടിരിക്കുന്ന അവസ്ഥയിൽ വീക്ഷിക്കുമ്പോൾ മധ്യാരേഖാ ഭാഗത്തെ ഭ്രമണദൈർഘ്യം 28 ദിവസമായി അനുഭവപ്പെടുന്നു.[24] പതുക്കെയുള്ള ഈ ഭ്രമണഫലമായി ഉളവാക്കപ്പെടുന്ന അപകേന്ദ്രബലം മധ്യരേഖാ ഭാഗത്തുള്ള ഗുരുത്വബലത്തിന്റെ 1.8 കോടിയിലൊരംശം മാത്രമേയുള്ളൂ. ഗ്രഹങ്ങൾ സൂര്യനുമേൽ ഉളവാക്കുന്ന വലിവു പ്രതിഭാസങ്ങളും വളരെ ദുർബലമാണ്‌, അവ കാരണമായും സൂര്യന്റെ രൂപത്തിന്‌ വലിയ മാറ്റം സംഭവിക്കുന്നില്ല.[25]

പോപ്പുലേഷൻ I (Population I) ഗണത്തിൽപ്പെട്ട ഘനമൂലകസമ്പന്നമായ നക്ഷത്രമാണ്‌ സൂര്യൻ.[26] സമീപത്തു സംഭവിച്ച ഒന്നോ അതിലധികമോ സൂപ്പർനോവകളുടെ ഫലമായുണ്ടായ ആഘാതതരംഗങ്ങളാകാം (shockwave) സൂര്യന്റെ ജനനത്തിന്‌ വഴിതെളിച്ചതെന്ന് അനുമാനിക്കപ്പെടുന്നു.[27] ഘനമൂലകങ്ങളുടെ ദാരിദ്ര്യമുള്ള പോപ്പുലേഷൻ II നക്ഷത്രങ്ങളെ അപേക്ഷിച്ച് സൗരയൂഥത്തിൽ കാണപ്പെടുന്ന സ്വർണ്ണം, യുറേനിയം മുതലായ ഘനമൂലകങ്ങളുടെ സാന്നിദ്ധ്യത്തിന്‌ കാരണമായി ഇതാണ്‌ വിശദീകരിക്കപ്പെട്ടിരിക്കുന്നത്. ഇത്തരം ഘനമൂലക സൃഷ്ടി സംഭവിക്കുന്ന ഊർജ്ജാഗിരണപ്രക്രിയകൾ സൂപ്പർനോവ പ്രതിഭാസത്തോടൊപ്പം സംഭവിക്കുന്നവയാണ്‌. ഘനമൂലകങ്ങൾ സൃഷ്ടിക്കപ്പെടാനുള്ള മറ്റൊരു വഴി രണ്ടാ തലമുറയിൽപ്പെട്ട ഭാര നക്ഷത്രങ്ങളുടെ ഉള്ളിൽ ന്യൂട്രോൺ ആഗിരണം ചെയ്യപ്പെടുന്നതുവഴിയുള്ള ട്രാൻസ്മ്യൂട്ടേഷനാണ്‌.[26]

ഗ്രഹങ്ങൾക്കുള്ളതുപോലെ സൂര്യന്റെ ശരീരത്തിന്‌ വ്യക്തമായ അതിർത്തിയില്ല, കേന്ദ്രത്തിൽ നിന്നും പുറത്തേക്ക് പോകുംതോറും സാന്ദ്രതയിൽ വലിയ കുറവു സംഭവിക്കുന്നു.[28] വ്യക്തമായ ആന്തരീക ഘടന സൂര്യനുണ്ടെങ്കിലും, സൂര്യന്റെ ആരം അളക്കുന്നത് അതിന്റെ പ്രഭാമണലത്തിന്റെ അതിർത്തി മുതലാണ്‌. താരതമ്യേന താപനില കുറഞ്ഞതും പ്രകാശത്തെ വലിയ തോതിൽ ആഗിരണം ചെയ്യാത്തതുമായ വാതക മണ്ഡലമാണ്‌ ഈ പാളിക്ക് മുകളിലുള്ളത്, അതിനാൽ തന്നെ നഗ്നനേത്രങ്ങൾക്കൊണ്ട് വീക്ഷിക്കുമ്പോൾ സൂര്യന്റെ ഉപരിതലം ഇതിലൂടെ കാണപ്പെടുന്നു.[29]

സൂര്യന്റെ ആന്തരീക ഭാഗം നേരിട്ട് നിരീക്ഷിക്കാൻ സാധ്യമല്ല, സൂര്യൻ വിദ്യുത്കാന്തികവികിരണങ്ങൾക്ക് അതാര്യവുമാണ്‌. ഭൂകമ്പങ്ങൾ സംഭവിക്കുമ്പോഴുണ്ടാകുന്ന തരംഗങ്ങൾ ഉപയോഗിച്ച് സീസ്മോളജിയിൽ ഭൂമിയുടെ ഘടന മനസ്സിലാക്കുന്നതുപോലെ സൂര്യന്റെ ആന്തരഭാഗത്തുകൂടി സഞ്ചരിക്കുന്ന മർദ്ദതരംഗങ്ങളെ പ്രയോജനപ്പെടുത്തി ഹീലിയോസീസ്മോളജിയിൽ സൂര്യന്റെ ആന്തരീക ഘടന അനാവൃതമാക്കുവാൻ ശ്രമിക്കുന്നു.[30] സൈദ്ധാന്തിക തലത്തിൽ ആന്തര പാളികളെ കുറിച്ച് കൂടുതൽ പഠിക്കുവാൻ കമ്പ്യൂട്ടർ സഹായത്തോടെ തയ്യാറാക്കുന്ന മാതൃകകൾ ഉപയോഗപ്പെടുത്തുകയാണ്‌ ചെയ്യുന്നത്.

കാമ്പ്[തിരുത്തുക]

കേന്ദ്രത്തിൽ നിന്നും സൗരവ്യാസാർദ്ധത്തിന്റെ 20-25% വരെയുള്ള ഭാഗമാണ്‌ സൂര്യന്റെ കാമ്പായി കണക്കാക്കപ്പെടുന്നത്.[31] 150 ഗ്രാം/സെ.മീ.3 വരെയാണ്‌ അവിടത്തെ സാന്ദ്രത[32][33] (ഭൂമിയിലെ ജലത്തിന്റെ സാന്ദ്രതയേക്കാൾ 150 മടങ്ങ്), താപനില 1,36,00,000 കെൽവിനും (ഇതേ സമയം ഉപരിതലത്തിലെ താപനില 5,800 കെൽവിനാണ്‌). അടുത്ത കാലത്ത് സോഹോ (SOHO) ദൗത്യം വഴി ലഭിച്ച വിവരങ്ങളുടെ വിശകലനം സൂര്യന്റെ കാമ്പിലെ ഭ്രമണനിരക്ക് മറ്റ് വികിരണമേഖലയേക്കാൾ കൂടുതലാണെന്ന വസ്തുതയെ പിന്തുണക്കുന്നതായിരുന്നു.[31] ഭൂരിഭാഗം സൂര്യന്റെ ഊർജ്ജോല്പാദനം നടക്കുന്നത് p-p (പ്രോട്ടോൺ-പ്രോട്ടോൺ) ശൃംഖല പ്രതിപ്രവർത്തനം വഴിയാണ്‌; ഈ പ്രക്രിയയിൽ ഹൈഡ്രജൻ മൂലകം ഹീലിയമായി മാറ്റപ്പെടുന്നു.[34] സൂര്യനിലെ ഹീലിയത്തിൽ രണ്ട് ശതമാനത്തിലെ താഴെ ഭാഗം മാത്രമേ CNO ചക്രം വഴി വന്നതായുള്ളൂ. കാമ്പിൽ മാത്രമാണ്‌ ആണവസം‌യോജനം വഴി വലിയതോതിലുള്ള താപം ഉല്പാദിപ്പിക്കപ്പെടുന്നത്, സൂര്യന്റെ ബാക്കിഭാഗങ്ങളെല്ലാം കാമ്പിൽ നിന്നും പുറത്തേക്ക് പ്രവഹിക്കുന്ന താപത്താൽ ചൂടാക്കപ്പെടുന്നതാണ്‌. അണുസം‌യോജനം വഴി കാമ്പിൽ ഉല്പാദിപ്പിക്കപ്പെടുന്ന ഊർജ്ജം ഫോട്ടോസ്ഫിയറിൽ നിന്നും വരുന്ന പ്രകാശമായും കണികകളുടെ ഉയർന്ന ഗതികോർജ്ജമായും ബഹിരാകാശത്തിലേക്ക് രക്ഷപ്പെടുന്നതിനു മുൻപായി വിവിധ പാളികളിലൂടെ സഞ്ചരിക്കേണ്ടതായുണ്ട്.[35][36]

സൂര്യന്റെ കാമ്പിൽ ഒരോ സെക്കന്റിലും 9.2 × 1037 എണ്ണം പ്രോട്ടോൺ-പ്രോട്ടോൺ ശൃംഖല പ്രതിപ്രവർത്തനം നടക്കുന്നുണ്ട്. ഈ പ്രക്രിയയ്ക്ക് നാല് പ്രോട്ടോണുകൾ ആവശ്യമുള്ളതിനാൽ, ഒരോ സെക്കന്റിലും 3.7 × 1038 എണ്ണം (6.2 × 1011 കിലോഗ്രാം) പ്രോട്ടോണുകൾ (അഥവാ ഹൈഡ്രജൻ അണുകേന്ദ്രങ്ങൾ) ഹീലിയം അണുകേന്ദ്രങ്ങളായി പരിവർത്തനം ചെയ്യപ്പെടുന്നു (ഏതാണ്ട് 8.9 × 1056 സ്വതന്ത്ര പ്രോട്ടോണുകൾ സൂര്യനിൽ ഉണ്ടെന്ന് കണക്കാക്കപ്പെടുന്നു).[36] ഹൈഡ്രജൻ ആറ്റങ്ങൾ സം‌യോജിച്ച ഹീലിയം ആയി മാറുന്ന ഈ പ്രക്രിയയിൽ പിണ്ഡത്തിന്റെ 0.7 ശതമാനത്തോളം ഊർജ്ജമായി മാറ്റപ്പെടുന്നതിനാൽ [37] ദ്രവ്യമാന-ഊർജ സമത്വമനുസരിച്ച് സൂര്യൻ ഒരു സെക്കന്റിൽ 4.26 മെട്രിക്ക് ടൺ ദ്രവ്യം ഊർജ്ജമായി മാറ്റുന്നുണ്ട്, അതായത് 383 യോട്ടാവാട്ട് (3.83 × 1026 വാട്ട്) ഊർജ്ജം.[36] 194 µW/kg ആണ്‌ ഊർജ്ജ സാന്ദ്രത,[38] താരതമ്യേന ചെറിയ കാമ്പിലാണ്‌ അണുസം‌യോജനത്തിന്റെ ഭൂരിഭാഗവും നടക്കുന്നെന്നതിനാൽ തന്നെ അവിടെയുള്ള ഊർജ്ജ സാന്ദ്രത ഇതിന്റെ 150 മടങ്ങായിരിക്കും.[39] താരതമ്യത്തിന്‌, മനുഷ്യശരീരം 1.3 W/kg എന്ന നിരക്കിലാണ്‌ താപം ഉല്പാദിപ്പിക്കുന്നത്, സൂര്യന്റെ 600 ഇരട്ടിയാണിത്.[40] കാമ്പിന്റെ സാന്ദ്രത ശരാശരിയേക്കാൾ 150 മടങ്ങ് കൂടുതലായതിനാൽ, 0.272 W/m3 എന്ന കുറഞ്ഞ നിരക്കിലാണ്‌ സൂര്യന്റെ കാമ്പിൽ നടക്കുന്ന ഊർജ്ജോല്പാദനമെന്ന് ഇത് വ്യക്തമാക്കുന്നു. ഈ നിരക്ക് ഒരു മെഴുകുതിരിയിൽ നടക്കുന്നതിനേക്കാൾ കുറവാണ്‌.[note 1]

സാന്ദ്രത, താപനില എന്നിവയുമായി ഗാഢമായി ബന്ധപ്പെട്ടുകിടക്കുന്നതാണ്‌ അണുസം‌യോജന പ്രക്രിയ, ഇതു കാരണം കാമ്പിൽ നടക്കുന്ന അണുസം‌യോജനപ്രക്രിയ സ്വയം സന്തുലിതത്വം പ്രാപിക്കുന്നു: അണുസം‌യോജന നിരക്ക് അല്പം കൂടുകയാണെങ്കിൽ കാമ്പ് കൂടുതൽ ചൂടാകുന്നതിനും പുറം പാളികൾ ചെലുത്തുന്ന ഭാരത്തിനെതിരായി അല്പം വികസിക്കുന്നതിന് കാരണമാകും ഇത് സം‌യോജന നിരക്കിൽ കുറവുവരുത്തുകയും അസന്തുലിതത്വം പരിഹരിക്കുകയും ചെയ്യുന്നു; സം‌യോജന നിരക്കിൽ അല്പം കുറവുവരുകയാണെങ്കിൽ താപനില കുറഞ്ഞ് കാമ്പ് സങ്കോചിക്കുന്നതിന് കാരണമാകുന്നു ഇത് സം‌യോജന നിരക്ക് വർദ്ധിപ്പിക്കുകയും കാമ്പ് വികസിച്ച് പഴയ അവസ്ഥയിലേക്ക് മടങ്ങുകയും ചെയ്യും.[42][43]

അണുസം‌യോജന പ്രക്രിയഫലമായി പുറത്തുവരുന്ന ഉന്നതോർജ്ജ ഫോട്ടോണുകൾ (ഗാമാ കിരണങ്ങൾ) ഏതാനും മില്ലിമീറ്റർ മാത്രമുള്ള പ്ലാസ്മയാൽ ആഗിരണം ചെയ്യപ്പെടുകയും വീണ്ടും ഏതെങ്കിലും വശത്തേക്ക് (കുറച്ച് ഊർജ്ജം കുറഞ്ഞ നിലയിൽ) ഉൽസർജ്ജിക്കപ്പെടുകയും ചെയ്യുന്നു. ഈ പ്രക്രിയ തുടരുന്നതുവഴി വികിരണം സൗരോപരിതലത്തിലെത്താൻ വലിയ കാലദൈർഘ്യം വേണ്ടിവരുന്നു. ഇങ്ങനെയുള്ള ഫോട്ടോണിന്റെ സഞ്ചാര കാലദൈർഘ്യം 10,000 വർഷങ്ങൾ മുതൽ 1,70,000 വർഷങ്ങൾ വരെയാകാമെന്ന് കണക്കാക്കപ്പെട്ടിരിക്കുന്നു.[44]

ഈ രീതിയിൽ സൂര്യന്റെ സം‌വഹന മേഖലയും കടന്ന് സഞ്ചരിച്ച് അതാര്യമായ പാളിയായ ഫോട്ടോസ്ഫിയറിൽ എത്തുന്ന ഫോട്ടോൺ ദൃശ്യപ്രകാശത്തിന്റെ രൂപത്തിൽ ബഹിരാകാശത്തേക്ക് രക്ഷപ്പെടുന്നു. കാമ്പിൽ സൃഷ്ടിക്കപ്പെടുന്ന ഒരോ ഗാമാ കിരണവും ബഹിരാകാശത്തിലേക്ക് രക്ഷപ്പെടുന്നതിനു മുൻപ് ഏതാനും ദശലക്ഷം പ്രകാശത്തിന്റെ ഫോട്ടോണുകളായി പരിവർത്തനം ചെയ്യപ്പെടുന്നു. അണുസം‌യോജനഫലമായി ന്യൂട്രിനോകളും ഉല്പാദിക്കപ്പെടുന്നുണ്ട്, പക്ഷേ ഫോട്ടോണുകളിൽ നിന്നും വിഭിന്നമായി അവ അപൂർവ്വമായേ ദ്രവ്യവുമായി പ്രതിപ്രവർത്തിക്കുകയുള്ളൂ, അതിനാൽ തന്നെ അവയിലെ മുഴുവനെണ്ണവും സൂര്യനിൽ നിന്നും പെട്ടെന്നുതന്നെ രക്ഷപ്പെട്ടു പുറത്തുവരുന്നു.ഏതാനും വർഷങ്ങളോളും സൂര്യൻ ഉല്പാദിപ്പിക്കുന്നതായി നിരീക്ഷിച്ച ന്യൂട്രിനോകളുടെ എണ്ണം സൈദ്ധാന്തികമായി കണക്കാക്കിയ എണ്ണത്തിന്റെ മൂന്നിലൊന്നും മാത്രമായി കാണപ്പെട്ടിരുന്നു. ഈ ചേർച്ചക്കുറവ് അടുത്ത കാലത്ത് കണ്ടെത്തിയ ന്യൂട്രിനോ ആന്ദോളനം കാരണമാണെന്ന് കണ്ടെത്തുകയുണ്ടായി: സൂര്യൻ ഉല്പാദിപ്പിക്കുന്നത് സൈദ്ധാന്തികമായി കണക്കാക്കിയത്ര ന്യൂട്രിനോകൾ തന്നെയാണ്‌, പക്ഷേ ന്യൂട്രിനോകൾ അവയുടെ ഫ്ലേവർ മാറുന്നതിനാലായിരുന്നു മൂന്നിൽ രണ്ടു ന്യൂട്രിനോകളേയും ന്യൂട്രിനോ ഡിറ്റക്റ്ററുകൾക്ക് തിരിച്ചറിയാൻ കഴിയാതിരുന്നത്.[45]

വികിരണ മേഖല[തിരുത്തുക]

സൗര ആരത്തിന്റെ 0.25 ഭാഗം മുതൽ 0.7 ഭാഗം വരെയുള്ള മേഖലയാണ്‌ വികിരണമേഖല. ഈ മേഖലയിലുള്ള സൗരപദാർത്ഥങ്ങൾ ഉയർന്ന താപനിലയിലുള്ളതും സാന്ദ്രവുമാണ്‌. അതിനാൽ കാമ്പിൽ ഉല്പാദിപ്പിക്കപ്പെടുന്ന ഉയർന്ന താപം പുറത്തേക്ക് പ്രവഹിക്കുന്നതിന്‌ താപ വികിരണം കൊണ്ടുമാത്രം സാധ്യമാണ്‌.[39] ഈ മേഖലയിൽ താപ സം‌വഹനം സംഭവിക്കുന്നില്ല; പുറത്തോട്ട് വരുംതോറും പദാർത്ഥങ്ങളുടെ താപനില കുറഞ്ഞുവരുന്നുവെങ്കിലും (70,00,000 °C ൽ നിന്നും 20,00,000 °C) ഈ താപനില വ്യത്യാസം അഡയബാറ്റിക്ക് ലാപ്സ് നിരക്കിനേക്കാൾ കുറവായതിനാൽ താപസം‌വഹനം നടക്കുന്നില്ല.[33] ഹൈഡ്രജൻ, ഹീലിയം അയോണുകൾ ഉൽസർജ്ജിക്കുന്ന ഫോട്ടോണുകളുടെ രൂപത്തിൽ താപം വികിരണം വഴി സഞ്ചരിക്കുന്നു, ഇങ്ങനെ അയോണുകൾ ഉൽസർജ്ജിക്കുന്ന ഫോട്ടോണുകൾ മറ്റ് അയോണുകളാൽ ആഗിരണം ചെയ്യപ്പെടുന്നതിന്‌ മുൻപായി വളരെ ചെറിയ ദൂരം മാത്രമേ സഞ്ചരിക്കുകയുള്ളൂ.[39] ഫോട്ടോൺ സാന്ദ്രത വികിരണമേഖലയുടെ ആരംഭത്തിൽ നിന്നും അവസാനത്തിലേക്ക് നീങ്ങുമ്പോൾ നൂറിലൊന്നായി ചുരുങ്ങുന്നു (20 g/cm³ ൽ നിന്നും 0.2 g/cm³ ലേക്ക്).[39]

വികിരണ മേഖലയ്ക്കും സം‌വഹന മേഖലയ്ക്കും ഇടയിലുള്ള പാളി ടാക്കോലൈൻ (tachocline) എന്നറിയപ്പെടുന്നു. ഏകതാനമായി ഭ്രമണം ചെയ്യുന്ന വികിരണ മേഖലയുടെ പാളിയും വിഭിന്ന രീതിയിൽ ഭ്രമണം ചെയ്യുന്ന സം‌വഹന മേഖലയുടെ പാളിയും ഒത്തുചേരുന്ന ഭാഗമാണിത്, ഇവിടെ ഒരു പാളി മറ്റൊരു പാളിയുടെ മീതെ തെന്നി നീങ്ങുന്നു.[46] സം‌വഹന മേഖലയിൽ കാണപ്പെടുന്ന വാതകചലനങ്ങൾ ഈ പാളിയുടെ മുകളിൽ നിന്നും അടിത്തട്ടിലെത്തുന്നതോടെ അപ്രത്യക്ഷമാകുകയും വികിരണ മേഖലയുടെ ശാന്തത കൈവരിക്കുകയും ചെയ്യുന്നു. സൂര്യന്റെ കാന്തിക ക്ഷേത്രത്തിനു കാരണമായ കാന്തിക ഡൈനാമോ ഈ പാളിയിലാണെന്നാണ്‌ കരുതപ്പെടുന്നത്.[33]

സം‌വഹന മേഖല[തിരുത്തുക]

സൂര്യന്റെ പുറം പാളിയിൽ ഉപരിതലത്തിൽ നിന്നും ഏകദേശം 2,00,000 കി.മീറ്റർ വരെയുള്ള (അതായത് സൗര ആരത്തിന്റെ 70%) പ്ലാസ്മ താപത്തെ അകത്തുനിന്നും പുറത്തേക്ക് വികിരണം വഴി കൈമാറ്റം നടത്തുന്നതിനാവശ്യമായത്ര താപനിലയുള്ളതോ സാന്ദ്രമോ അല്ല (മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ അത് അതാര്യവുമാണ്‌). ഇതിന്റെ ഫലമായി താപ സ്തംഭങ്ങൾ തപ്തമാക്കപ്പെട്ട പദാർത്ഥങ്ങളെ ഉപരിതലത്തിലേക്ക് (പ്രഭാമണ്ഡലത്തിലേക്ക്) വഹിച്ചു കൊണ്ടുവരുന്നു. ഉപരിതലത്തിലെത്തുന്ന അത്തരം പദാർത്ഥങ്ങൾ താപനില കുറയുന്നതോടെ വികിരണമേഖലയിൽ നിന്നും കൂടുതൽ താപം സ്വീകരിക്കുന്നതിനായി സം‌വഹന മേഖലയുടെ അടിത്തട്ടിലേക്ക് ആഴ്ന്നു പോകുന്നു. സൂര്യന്റെ ദൃശ്യമാകുന്ന ഉപരിതലത്തിൽ താപനില 5,700° K ലേക്ക് താഴ്ന്നിരിക്കും. സാന്ദ്രതയും ഏതാണ്ട് 0.2 g/m3 (അതായത് ഭൂമിയിലെ സമുദ്രനിരപ്പിലെ അന്തരീക്ഷസാന്ദ്രതയുടെ പതിനായിരത്തിലൊരു ഭാഗം) മാത്രമേ ഉണ്ടാകൂ.[33]

മുകളിൽ സൂചിപ്പിച്ച താപസ്തംഭങ്ങളാണ്‌ സൗരോപരിതലത്തിൽ കാണുന്ന സോളാർ ഗ്രാനുലേഷനും സൂപ്പർഗ്രാനുലേഷനും സൃഷ്ടിക്കുന്നത്. സൂര്യാന്തർഭാഗത്തെ ഏറ്റവും പുറമേയുള്ള ഈ മേഖലയിൽ നടക്കുന്ന പ്രക്ഷുബ്ധമായ സം‌വഹനങ്ങൾ സൗരോപരിതലം മുഴുവനും ചെറുവലിപ്പത്തിലുള്ള കാന്തിക ഉത്തര ദക്ഷിണ ധ്രുവജോഡികൾ സൃഷ്ടിക്കുന്നതിന്‌ കാരണമാകുന്നു.[33] സൗരസ്തംഭങ്ങൾ ബെർണാഡ് സെല്ലുകളാണ് - അതിനാൽ അവ ഷഡ്‌ഭുജ സ്തംഭങ്ങളെപ്പോലെയാണ്.[47]

പ്രഭാമണ്ഡലം[തിരുത്തുക]

ദൃശ്യപ്രകാശത്തിന് സുതാര്യമാകുന്നതുവഴി കാണപ്പെടുന്ന സൗരോപരിതലത്തിനു താഴെയുള്ള പാളിയാണ് പ്രഭാമണ്ഡലം (photosphere).[48] പ്രഭാമണ്ഡലത്തിനു പുറത്ത് സൂര്യപ്രകാശത്തിനു ബഹിരാകാശത്തേക്ക് സഞ്ചരിക്കാനുള്ള സ്വാതന്ത്ര്യം ലഭിക്കുന്നു, അങ്ങനെ ഈ രൂപത്തിൽ ഊർജ്ജം സൂര്യനെ വിട്ടു പുറത്തേക്ക് വ്യാപിക്കുന്നു. പ്രകാശകണങ്ങളെ എളുപ്പത്തിൽ ആഗിരണം ചെയ്യുന്ന H അയോണുകളിലുണ്ടാകുന്ന കുറവാണ് ഈ തരത്തിൽ അതാര്യവസ്ഥയ്ക്ക് മാറ്റം സംഭവിക്കുന്നതിനുള്ള കാരണം.[48] ഇലക്ട്രോണുകൾ ഹൈഡ്രജൻ ആറ്റങ്ങളുമായി പ്രതിപ്രവർത്തിച്ച് H അയോണുകൾ ഉണ്ടാകുന്നതുവഴിയാണ് നമ്മൾ കാണുന്ന ദൃശ്യപ്രകാശം രൂപമെടുക്കുന്നത്.[49][50] ഏതാനും പത്തോ നൂറോ കിലോമീറ്റർ കട്ടിയുള്ളതും ഭൂമിയിലെ വായുവിനേക്കാൾ അല്പം സുതാര്യതയേറിയതുമാണ് പ്രഭാമണ്ഡലം. പ്രഭാമണ്ഡലത്തിന്റെ മുകൾഭാഗം അടിവശത്തിനേക്കാൾ താപനിലയിൽ കുറഞ്ഞതായതിനാൽ സൂര്യന്റെ ചിത്രത്തിൽ മധ്യഭാഗം വശങ്ങളേക്കാൾ തെളിഞ്ഞു കാണപ്പെടുന്നു, ഈ പ്രതിഭാസം ലിംബ് ഡാർക്കെനിങ്ങ് (limb darkening) എന്നറിയപ്പെടുന്നു.[48] സൂര്യന്‌ ഏകദേശം ഒരു ബ്ലാക്ക്-ബോഡി വർണ്ണരാജിയാണുള്ളത് (black-body spectrum) ഇത് സൂചിപ്പിക്കുന്നത് താപനില 6,000 കെൽവിനെന്നാണ്‌, ഇടയ്ക്ക് പ്രഭാമണ്ഡലത്തിനു മുകളിലുള്ള നേരിയ പാളികളിൽ ആറ്റോമിക ആഗിരണ രേഖകളും കാണപ്പെടുന്നു. പ്രഭാമണ്ഡലത്തിലെ പദാർത്ഥസാന്ദ്രത ഏതാണ്ട് 1023 m−3 ആണ്‌ (ഇത് ഭൂമിയിലെ സമുദ്രനിരപ്പിലെ അന്തരീക്ഷത്തിന്റെ സാന്ദ്രതയുടെ ഒരു ശതമാനം മാത്രമാണ്‌).[39]

പ്രഭാമണ്ഡലത്തിന്റെ ഒപ്റ്റിക്കൽ സ്പെക്ട്രത്തെ കുറിച്ചുള്ള ആദ്യകാല പഠനങ്ങൾ നടത്തിയ സമയത്ത് അതുവരെ ഭൂമിയിലുള്ളതായി അറിയപ്പെടാത്ത രാസമൂലകത്തിന്റേതായ അവശോഷണരേഖകൾ (absorption lines) കണ്ടെത്തുകയുണ്ടായി. 1868 ൽ നോർമൻ ലോക്കയർ (Norman Lockyer) എന്ന ശാസ്ത്രജ്ഞൻ അത് ഒരു അതുവരെ മനസ്സിലാകാത്ത ഒരു പുതിയ മൂലകത്തിന്റേതാണെന്ന നിഗമനത്തിലെത്തുകയും ഗ്രീക്ക് സൂര്യദേവനായ ഹീലിയോസിന്റെ നാമത്തോട് ചേരുന്ന ഹീലിയം എന്ന പേര് നൽകുകയും ചെയ്തു. അതിനു 25 വർഷങ്ങൾക്ക് ശേഷം മാത്രമാണ്‌ ഭൂമിയിൽ ഹീലിയം വേർതിരിച്ച് മനസ്സിലാക്കപ്പെട്ടത്.[51]

അന്തരീക്ഷം[തിരുത്തുക]

പൂർണ്ണ സൂര്യഗ്രഹണ സമയത്ത് സൂര്യന്റെ കൊറോണയെ നഗ്നനേത്രങ്ങൾ കൊണ്ട് വീക്ഷിക്കുവാൻ കഴിയും.

പ്രഭാമണ്ഡലത്തിന്‌ മുകളിലുള്ള ഭാഗങ്ങളെയെല്ലാം ചേർത്ത് സൗരാന്തരീക്ഷം എന്ന പദം കൊണ്ട് സൂചിപ്പിക്കുന്നു.[48] ആ ഭാഗങ്ങൾ വിദ്യുത്കാന്തികവർണ്ണരാജിയിലെ റേഡിയോ മുതൽ ദൃശ്യ, ഗാമാ വരെയുള്ള കിരണങ്ങൾ ഉപയോഗപ്പെടുത്തുന്ന ദൂരദർശിനികൾ വഴി നിരീക്ഷിക്കുവാൻ കഴിയും. സൗരാന്തരീക്ഷത്തെ ആകെ അഞ്ച് മേഖലകളായി തിരിച്ചിരിക്കുന്നു: ടെമ്പറേച്ചർ മിനിമം, വർണ്ണമണ്ഡലം (chromosphere), സംക്രമണമേഖല (transition region), കൊറോണ (corona), ഹീലിയോസ്ഫിയർ (heliosphere) എന്നിവയാണവ.[48] ഇതിൽ ഹീലിയോസ്ഫിയർ എന്ന മേഖല ഏറ്റവും കനം കുറഞ്ഞതും വളരെ ദൂരം വരെ അതായത് പ്ലൂട്ടോയുടെ പരിക്രമണാതിരിത്തിയും കടന്ന് നക്ഷത്രാന്തര മാധ്യമങ്ങളുമായുള്ള ശക്തമായ അതിർത്തിയായ ഹീലിയോപോസ് (heliopause) വരെ എത്തിനിൽക്കുന്നു. വർണ്ണമണ്ഡലം, സംക്രമണമേഖല, കോറോണ തുടങ്ങിയവ സൗരോപരിതലത്തേക്കാൾ താപനിലകൂടിയവയാണ്‌.[48] ഇതിനുള്ള കാരണം ഇതുവരെ വ്യക്തമായി വിശദീകരിക്കുവാൻ സാധിച്ചിട്ടില്ല; ലഭിച്ച വിവരങ്ങളനുസരിച്ചുള്ള വിവരങ്ങൾ സൂചിപ്പിക്കുന്നത് കോറോണയെ ചൂടുപിടിപ്പിക്കുവാനുള്ള ഊർജ്ജം ആൽഫ്‌വെൻ തരംഗങ്ങൾക്ക് (Alfvén waves) ഉണ്ടായിരിക്കാമെന്നാണ്‌.[52]

ടെമ്പറേച്ചർ മിനിമം എന്നു വിളിക്കപ്പെടുന്ന പാളിയാണ്‌ സൂര്യനിലെ ഏറ്റവും താപനില കുറഞ്ഞ പാളി, പ്രഭാമണ്ഡലത്തിന്‌ ഏകദേശം 500 കി.മീ മുകളിലുള്ള മേഖലയാണിത്, ഏതാണ്ട് 4,100 കെൽവിനാണ്‌ ഈ മേഖലയിലെ താപനില.[48] കാർബൺ മോണോക്സൈഡ്, ജലം തുടങ്ങിയ ലളിത തന്മാത്രകൾ ഉണ്ടായിരിക്കാവുന്നത്ര താപനില കുറവാണ്‌ ഈ മേഖലയ്ക്ക്, ഇത്തരം തന്മാത്രകളെ അവയുടെ അവശോഷണ വർണ്ണരാജി വഴി തിരിച്ചറിയാവുന്നതാണ്‌.[53]

ടെമ്പറേച്ചർ മിനിമം പാളിക്കു മുകളിൽ ഏതാണ്ട് 2,000 കി.മീ കനമുള്ള പാളിയാണ്‌ വർണ്ണമണ്ഡലം (chromosphere), ഉൽസർജ്ജന, അവശോഷണ രേഖകൾ കൂടുതലുള്ള ഭാഗമാണിത്.[48] വർണ്ണം എന്നർത്ഥം വരുന്ന ക്രോമ (chroma) എന്ന ഗ്രീക്ക് പദത്തിൽ നിന്നാണ്‌ ഈ പാളിയുടെ ഇംഗ്ലീഷ് നാമമായ chromosphere രൂപപ്പെട്ടിരിക്കുന്നത്. പൂർണ്ണ സൂര്യഗ്രഹണ സമയത്ത് വർണ്ണപ്രഭയോടെ കാണപ്പെടുന്നതിനാലാണ് ഈ പേര്.[39] വർണ്ണമണ്ഡലത്തിലെ താപനില മുകളിലേക്ക് വരുന്തോറും വർദ്ധിച്ചുവരുന്നു, ഏറ്റവും മുകളിൽ 20,000 കെൽവിൻ വരെ താപനില എത്തുന്നു.[48] വർണ്ണമണ്ഡലത്തിന്റെ മുകൾ ഭാഗത്ത് ഹീലിയം ഭാഗികമായി അയോണികരിക്കപ്പെടുന്നു.[54]

ഈ ചിത്രത്തിൽ സൂര്യന്റെ വ്യത്യസ്ത കാന്തിക ധ്രുവങ്ങളുള്ള പ്ലാസ്മയിലെ മേഖലകൾ തമ്മിൽ ബന്ധപ്പെടുന്നത് കാണിക്കുന്നു. ഹിനോഡെ പേടകത്തിലെ ദൃശ്യപ്രകാശത്തിലെ സൗരദൂരദർശിനി 2007 ജനുവരി 12 ന് പകർത്തിയത്.

വർണ്ണമണ്ഡലത്തിന്‌ മുകളിലുള്ള കനം കുറഞ്ഞ (ഏകദേശം 200 കി.മീ കനമുള്ള) പാളിയാണ്‌ സംക്രമണ മേഖല (transition region). താപനില വർണ്ണമണ്ഡലത്തിന്റെ മുകൾഭാഗത്തുള്ള 20,000 കെൽവിൻ എന്നതിൽ നിന്നും പെട്ടെന്നു വർദ്ധിച്ചു മുകളിലെത്തുമ്പോൾ ഒരു ദശലക്ഷം കെൽവിൻ വരെയായിത്തീരുന്നു.[55] ഈ താപനില വർദ്ധന ഹീലിയത്തിന്റെ പൂർണ്ണ അയോണീകരണത്തിനു കാരണമാകുകയും പ്ലാസ്മയുടെ വികിരണം വഴിയുള്ള തണുക്കലിനെ കുറയ്ക്കുകയും ചെയ്യുന്നു.[54] ഒരു കൃത്യമായ ഉയരത്തിലല്ല സംക്രമണ മണ്ഡലം നിലനിൽക്കുന്നത്, മറിച്ച് വർണ്ണമണ്ഡലത്തിലെ സവിശേഷതകളായ പ്രകാശവലയങ്ങൾ, ഇഴരൂപങ്ങൾ തുടങ്ങിയവയുടെ ചുറ്റിലായി രൂപപ്പെടുകയാണ്‌.[39] ഭൗമോപരിതലത്തിൽ നിന്നും എളുപ്പത്തിൽ നിരീക്ഷണ വിധേയമാക്കാവുന്നതല്ല സംക്രമണ മണ്ഡലം, ബഹിരാകാശത്തു നിന്നും അൾട്രാവയലറ്റ് തരംഗങ്ങളിലെ ഉയർന്ന ഭാഗത്തെ ഉപയോഗപ്പെടുത്താവുന്ന ഉപകരണങ്ങൾ ഉപയോഗിച്ച് ഈ മേഖലയെ വീക്ഷണവിധേമാക്കുവാൻ കഴിയും.[56]

സൂര്യന്റെ ഏറ്റവും ഉപരിതലത്തിലുള്ള സൗരാന്തരീക്ഷമാണ്‌ കൊറോണ, വ്യാപ്തത്തിൽ സൂര്യനേക്കാളും വരും ഈ മേഖല. ബഹിരാകാശത്തേക്ക് വ്യാപിച്ചു കിടക്കുന്നതാണ്‌ കോറോണ, ഈ മേഖല അവസാനം സൗരയൂഥം മുഴുവൻ വ്യാപിക്കുന്ന സൗരക്കാറ്റുകളായി രൂപപ്പെടുകയും ചെയ്യുന്നു.[57] കൊറോണയുടെ ഏറ്റവും താഴെഭാഗത്ത് പദാർത്ഥ സാന്ദ്രത ഏതാണ്ട് 1015–1016 m−3 ആണ്‌.[54] കൊറോണയുടേയും സൗരക്കാറ്റുകളുടേയും ശരാശരി താപനില 10-20 ശലക്ഷം കെൽ‌വിനാണ്‌, പക്ഷേ ഏറ്റവും താപനില കൂടിയ ഭാഗത്ത് 80 ലക്ഷം മുതൽ 2 കോടി കെൽവിൻ വരെയാകാം.[55] കൊറോണയിലെ ഈ താപനിലയെ വിശദീകരിക്കുന്ന സിദ്ധാന്തങ്ങളൊന്നും രൂപപ്പെടുത്തുവാൻ ഇതു വരെ കഴിഞ്ഞിട്ടില്ല, കാന്തിക പുനർബന്ധനവുമായി ബന്ധപ്പെട്ടു വരുന്നതാണ്‌ ഈ താപത്തിൽ കുറച്ചുഭാഗമെന്ന് അറിയാമെന്ന് മാത്രം.[55][57]

സൂര്യനു ചുറ്റും സൗരകാറ്റിന്റെ പ്ലാസ്മയാൽ നിറഞ്ഞു നിൽക്കുന്ന ആവരണമാണ്‌ ഹീലിയോസ്ഫിയർ, 20 സൗര ആരം (0.1 AU) മുതൽ സൗരയൂഥത്തിന്റെ അതിർത്തിവരെ ഇത് വ്യാപിച്ച് കിടക്കുന്നു. ആൽഫ്‌വെൻ തരംഗങ്ങളുടെ വേഗതയേക്കാൾ സൗരക്കാറ്റുകൾ വേഗത കൈവരിക്കുന്ന മേഖലയായാണ്‌ ഇതിന്റെ ആന്തര അതിർത്തി നിജപ്പെടുത്തിയിരിക്കുന്നത്, .[58] ആൽഫ്‌വെൻ തരംഗങ്ങളുടെ വേഗതയിൽ മാത്രമേ വിവരത്തിന്‌ സഞ്ചരിക്കാൻ കഴിയൂ എന്നതിനാൽ പുറത്തുള്ള പ്രക്ഷുബ്ധതയും (turbulence) ചലനാത്മകബലങ്ങളും കോറോണയ്ക്കകത്തുള്ള ആകാരത്തെ സ്വാധീനിക്കുന്നില്ല. 50 ആസ്ട്രോണമിക്കൽ യൂണിറ്റ് അകലെയുള്ള ഹീലിയോപോസ് എത്തുന്നതുവരെ സർപ്പിളാകൃതിയിൽ കാന്തികക്ഷേത്രം രൂപപ്പെടുത്തിക്കൊണ്ട് ഹീലിയോസ്ഫിയറിനകത്തു നിന്നും തുടർച്ചയായി സൗരക്കാറ്റുകൾ പുറത്തേക്ക് ഒഴുകിക്കൊണ്ടിരിക്കുകയാണ്‌.[57] ഹീലിയോസ്ഫിയറിന്റെ അതിർത്തിയിലെത്താറായ രണ്ട് വോയേജർ പേടകങ്ങളും ഉയർന്ന ചാർജ്ജുള്ള കണികകളുടെ സാന്നിദ്ധ്യം രേഖപ്പെടുത്തിയിട്ടുണ്ട്.[59]

കാന്തികക്ഷേത്രം[തിരുത്തുക]

സൂര്യന്റെ പ്ലാസ്മയിൽ രൂപപ്പെടുന്ന കാന്തികക്ഷേത്രം ഭ്രമണം ചെയ്ത് ഗ്രഹാന്തരമാധ്യമത്തിൽ വ്യാപിക്കുന്നതുവഴി സൃഷ്ടിക്കപ്പെടുന്ന ഹീലിയോസ്ഫെറിക്ക് കറന്റ് ഷീറ്റ് സൗരയൂഥത്തിന്റെ അതിർത്തിവരെ എത്തുന്നു.


കാന്തികമായി സജീവമായ ഒരു നക്ഷത്രമാണ്‌ സൂര്യൻ. വർഷാവർഷങ്ങളിൽ മാറികൊണ്ടിരിക്കുന്നതും ഒരോ സോളാർ മാക്സിമത്തിനോടുത്തും (ഏതാണ്ട് 11 വർഷങ്ങൾ കൂടുമ്പോൾ) ദിശമാറുന്നതുമായ ശക്തമായ കാന്തികക്ഷേത്രം ഇതിനുണ്ട്.[60] സൗരകളങ്കം, സൗരജ്വാല തുടങ്ങിയവയുൾപ്പെടുന്ന സൗരപ്രവർത്തനങ്ങൾക്കും സൗരക്കാറ്റിലെ വ്യതിയാനങ്ങൾക്കും കാരണമാകുന്നത് ഈ കാന്തികക്ഷേത്രമാണ്‌.[61] സൗരപ്രവർത്തനങ്ങൾ കാരണമായി അറോറ, റേഡിയോ വാർത്താവിനിമയങ്ങളിലും ഊർജ്ജവിതരണ സം‌വിധാനങ്ങളിലും തടസ്സങ്ങളുളവാകുക തുടങ്ങിയ വിവിധ പ്രതിഭാസങ്ങൾ ഭൂമിയിൽ അരങ്ങേറാറുണ്ട്. സൗരയൂഥ രൂപവത്കരണത്തിലും പരിണാമത്തിലും സൗരപ്രവർത്തങ്ങൾ വലിയ പങ്കുവഹിച്ചിട്ടുണ്ടാകുമെന്ന് കരുതുന്നു. ഭൂമിയുടെ ബാഹ്യാന്തരീക്ഷത്തിന്റെ ഘടനയിൽ വ്യത്യാസം വരാനും സൗരപ്രവർത്തനങ്ങൾ കാരണമാകാറുണ്ട്.[62]

ഉയർന്ന താപനിലയിൽ പ്ലാസ്മയുടേയും വാതകങ്ങളുടെയും രൂപത്തിലാണ്‌ സൂര്യനിലെ ദ്രവ്യം സ്ഥിതിചെയ്യുന്നത്. ഇതുവഴി മധ്യ രേഖാഭാഗങ്ങൾക്ക് ഉയർന്ന അക്ഷങ്ങളേക്കാൾ വേഗത്തിൽ ഭ്രമണ ചെയ്യാൻ സാധിക്കുന്നു (മധ്യരേഖാഭാഗത്ത് ഭ്രമണദൈർഘ്യം 25 ദിവസവും ധ്രുവങ്ങളിൽ അത് 35 ദിവസവുമാണ്‌). ഇങ്ങനെയുള്ള വ്യത്യസ്ത ഭ്രമണങ്ങൾ സമയം ചെല്ലുംതോറും കാന്തികക്ഷേത്ര രേഖകൾ പിണയുവാൻ കാരണമാകുന്നു, ഇത് സൗരോപരിതലത്തിലെ കാന്തികക്ഷേത്ര ലൂപ്പുകളിൽ പ്രതിബന്ധം സൃഷ്ടിക്കുവാൻ കാരണമാകുകയും കാന്തിക പുനർബന്ധനങ്ങളെത്തുടർന്ന് സൗരകളങ്കങ്ങൾ പോലെയുള്ള പ്രതിഭാസങ്ങൾക്ക് കാരണമാകുകയും ചെയ്യുന്നു. കാന്തികക്ഷേത്രങ്ങളുടെ ഈ പിണച്ചിലുകൾ സൗര ഡൈനാമോക്കും 11 വർഷങ്ങൾ കൂടുമ്പോൾ സൗര കാന്തികക്ഷേത്രം വിപരീത ദിശയിലാകുന്നതിനു കാരണമാകുന്ന 11 വർഷത്തെ ഇടവേളയുള്ള സൗചക്രത്തിനും കാരണമാകുന്നു.[63][64]

സൂര്യനിൽ നിന്നും വളരെയകന്നും സൗരകാന്തികക്ഷേത്രം വ്യാപിക്കുന്നുണ്ട്. കാന്തീകരിക്കപ്പെട്ട സൗര പ്ലാസ്മ സൂര്യന്റെ കാന്തികക്ഷേത്രത്തെ ബഹിരാകശത്തേക്ക് വഹിച്ചുകൊണ്ടു പോകുന്നു, ഇത് ഗ്രഹാന്തര കാന്തികക്ഷേത്രത്തിന്റെ രൂപവത്കരണത്തിനു കാരണമാകുന്നു.[57] കാന്തികക്ഷേത്ര രേഖകൾക്കനുസരിച്ചു മാത്രമേ പ്ലാസ്മയ്ക്ക് സഞ്ചരിക്കാനാവൂ എന്നതിനാൽ ഗ്രഹാന്തര കാന്തികക്ഷേത്രം ആരംഭത്തിൽ അതിനനുസരിച്ച് സൂര്യനിൽ നിന്നും അകന്നുപോകുന്നു. സൗരമധ്യരേഖയ്ക്ക് മീതേയും കീഴെയുമുള്ള കാന്തികക്ഷേത്രങ്ങൾ സൂര്യനു നേരെയായും സൂര്യനിൽ നിന്നും പുറമേക്കുമായും വ്യത്യസ്ത പൊളാരിറ്റി ആയതിനാൽ സൗര മധ്യരേഖയുടെ തലത്തിൽ ഹീലിയോസ്ഫെറിക്ക് കറന്റ് ഷീറ്റ് എന്ന ഒരു നേർത്ത തലം രൂപപ്പെടുന്നു.[57] സൂര്യന്റെ ഭ്രമണം വഴി വലിയ ദൂരത്തേക്ക് കാന്തികക്ഷേത്രത്തേയും കറന്റ് ഷീറ്റിനേയും പിണച്ച് പാർക്കർ സർപ്പിളം എന്ന ആർക്കിമീഡിയൻ സർപ്പിളാകാരം സൃഷ്ടിക്കുന്നു.[57] ഇരട്ട ധ്രുവങ്ങളോട് കൂടിയ സൗരകാന്തികക്ഷേത്രത്തേക്കാൾ ശക്തമാണ്‌ ഗ്രഹാന്തര കാന്തികക്ഷേത്രം. പ്രഭാമണ്ഡലത്തിൽ 50–400 μT ഉള്ള ഇരട്ടധ്രുവ കാന്തികക്ഷേത്രം ദൂരത്തിന്റെ ഘനനിരക്കിൽ കുറയുന്നു, ഭൂമിയുടെ അത്ര അകലെത്തെത്തുമ്പോൾ 0.1 nT ആണ്‌ അതിന്റെ ശക്തി. പക്ഷേ ഭൂമിയുടെ സമീപമുള്ള ഗ്രഹാന്തര കാന്തികക്ഷേത്രം 5 nT ആണ്‌.[65]

രാസഘടന[തിരുത്തുക]

ഹൈഡ്രജൻ, ഹീലിയം എന്നിവയാണ്‌ സൂര്യനിലടങ്ങിയിരിക്കുന്ന പ്രധാന മൂലകങ്ങൾ; പ്രഭാമണ്ഡലത്തിൽ അവയുടെ അളവ് യഥാക്രമം 74.9 ശതമാനവും 23.8 ശതമാനവുമാണ്‌.[66] ഇവയേക്കാൾ ഉയർന്ന മൂലകങ്ങളെ ജ്യോതിശാസ്ത്രത്തിൽ ലോഹങ്ങൾ എന്നു വിളിക്കുന്നു, അത്തരം മൂലകങ്ങളുടെ അളവ് രണ്ട് ശതമാനത്തിൽ താഴെയാണ്‌. അവയിൽ ഏറ്റവും കൂടുതൽ കാണപ്പെടുന്നത് ഓക്സിജൻ (സൂര്യന്റെ ഏതാണ്ട് 1 ശതമാനം), കാർബൺ (0.3%), നിയോൺ (0.2%), ഇരുമ്പ് (0.2%) എന്നിവയാണ്‌.[67]

സൂര്യൻ അത് ജന്മം കൊണ്ട നക്ഷത്രന്തരമാധ്യമത്തിൽ നിന്നാണ്‌ അതിന്റെ രാസഘടകങ്ങൾ സ്വീകരിച്ചിരിക്കുന്നത്: ഹൈഡ്രജനും ഹീലിയവും സൃഷ്ടിക്കപ്പെട്ടിരിക്കാവുന്നത് ബിഗ് ബാങ്ങ് ന്യൂക്ലിയോസിന്തസിസ് വഴിയായിരിക്കണം. വ്യത്യസ്ത നക്ഷത്രങ്ങൾ അവയുടെ പരിണാമദിശകളിൽ സ്റ്റെല്ലാർ ന്യൂക്ലിയോസിന്തസിസ് വഴി ഉല്പാദിപ്പിച്ച പദാർത്ഥങ്ങൾ അവയുടെ അന്ത്യത്തോടെ നക്ഷത്രന്തരയിടങ്ങളിൽ അവശേഷിപ്പിക്കുന്നതു വഴിയായിരിക്കണം ലോഹങ്ങൾ സൂര്യന്‌ ലഭിച്ചിരിക്കുന്നത്.[68] പ്രഭാമണ്ഡലത്തിന്റെ രാസഘടന ആരംഭത്തിലെ സൗരയൂഥത്തിന്റേതായിരിക്കും,[69] അങ്ങനെയാണെങ്കിലും സൂര്യന്റെ രൂപവത്കരണത്തിനു ശേഷം ഹീലിയവും മറ്റ് ഘനമൂലകങ്ങളും പ്രഭാമണ്ഡലത്തിനു പുറത്തുകടന്നു. അതുവഴി സൂര്യൻ പ്രാഗ് നക്ഷത്രമായിരുന്ന അവസ്ഥയിലുണ്ടായിരുന്നതിനേക്കാൾ കുറഞ്ഞ അളവിൽ ഹീലിയവും അന്നുണ്ടായിരുന്നതിന്റെ 84% ഘനമൂലകങ്ങളും മാത്രം അവശേഷിച്ചു; 71.1% ഹൈഡ്രജൻ, 27.4% ഹീലിയം, 1.5% ലോഹങ്ങൾ (മറ്റ് മൂലകങ്ങൾ) എന്ന നിലയിലായിരുന്നു പ്രാഗ്നക്ഷത്രമായിരുന്ന സൂര്യന്റെ രാസഘടകങ്ങൾ.[66]

സൂര്യന്റെ ഏറ്റവും ആന്തരഭാഗത്തുള്ള ഘടകങ്ങളുടെ അളവ് അണുസം‌യോജനം വഴി ഹൈഡ്രജൻ ഹീലിയം ആകുന്നതുവഴി മാറിയിട്ടുണ്ട്, അതിനാൽ തന്നെ നിലവിൽ സൂര്യന്റെ ഏറ്റവും ആന്തര ഭാഗത്ത് നിലവിൽ 60% ഹീലിയമുണ്ട്, ലോഹങ്ങളുടെ അളവിൽ മാറ്റം സംഭവിച്ചിട്ടില്ല. ആ ഭാഗങ്ങളിൽ വികിരണമാണ്‌ നടക്കുന്നത്, സം‌വഹനമല്ല. ആയതിനാൽ അണുസം‌യോജനത്തിന്റെ ഉല്പന്നങ്ങൾ പ്രഭാമണ്ഡലത്തിലെത്തിച്ചേർന്നിട്ടില്ല.[70]

സൂര്യനിൽ ഘനമൂലകങ്ങളുടെ സാന്നിദ്ധ്യം അളക്കുന്നതിന്‌ സ്വീകാര്യമായ രണ്ട് വഴികളിൽ ഒന്ന് പ്രഭാമണ്ഡലത്തെ സ്പെക്ട്രോസ്കോപ്പി ഉപയോഗിച്ച് മാപനം നടത്തുന്നതും മറ്റൊന്ന് ഇതുവരെ ദ്രാവകാവസ്ഥയിലെത്തുന്നതിനാവശ്യമായ താപനിലയിലേക്ക് ഉയർത്തപ്പെടാത്ത അവസ്ഥയിലുള്ള ഉൽക്കാഖണ്ഡങ്ങൾ വഴിയുമാണ്‌. ഘനമൂലകങ്ങൾക്ക് വ്യതിചലനം സംഭവിക്കാത്തതിനാൽ ഈ ഉൽക്കാഖണ്ഡങ്ങൾ പ്രാഗ്നക്ഷത്രമായ സൂര്യന്റെ ഘടകാവസ്ഥ നിർലർത്തുവന്നവയായിരിക്കും.[11]

ഇരുമ്പിന്റെ ഗ്രൂപ്പിൽപ്പെട്ട മൂലകങ്ങളുടെ ഏക അയോണുകൾ[തിരുത്തുക]

1970 കളിൽ സൂര്യനിൽ ഇരുമ്പിന്റെ ഗ്രൂപ്പിൽപ്പെട്ട മൂലകങ്ങളുടെ സാന്നിദ്ധ്യമറിയുവാനായി കുറേ ഗവേഷണങ്ങൾ നടന്നു.[71][72] എങ്കിലും ഇരുമ്പ് ഗ്രൂപ്പിലെ മൂലകങ്ങൾ സ്വഭാവവിശേഷണങ്ങളിൽ നേർത്ത വ്യത്യാസം മാത്രം പ്രദർശിപ്പിക്കുന്നതിനാൽ (Hyperfine structure) 1978 വരെ വലിയ പുരോഗതിയുണ്ടായില്ല.[71]

1960 കളിലാണ്‌ ആദ്യമായി വലിയ തോതിൽ ഇരുമ്പ് ഗ്രൂപ്പ് മൂലകങ്ങളുടെ ഓസിലേറ്റർ സ്ട്രെങ്തിന്റ പട്ടിക തയ്യാറായത്,[73] കുറച്ചു കൂടി മെച്ചപ്പെട്ട രീതിയിലുള്ള പട്ടിക 1976 ൽ തയ്യാറാക്കി.[74] ഇരുമ്പിന്റെ ഗ്രൂപ്പിൽപ്പെട്ട മൂലകങ്ങളുടെ ഏക അയോണുകളുടെ സാന്നിദ്ധ്യം 1978 ൽ മനസ്സിലാകുകയും ചെയ്തു.[71]

സൗരചക്രങ്ങൾ[തിരുത്തുക]

സൗരകളങ്കങ്ങളും സൗരകളങ്ക ചക്രവും[തിരുത്തുക]

പ്രധാന ലേഖനം: സൗരകളങ്കങ്ങൾ
കഴിഞ്ഞ 30 വർഷക്കാലത്തിൽ സൗരചക്രങ്ങളിൽ വന്ന മാറ്റങ്ങൾ

അനുയോജ്യമായ ഫിൽട്ടറുകളുപയോഗിച്ച് സൂര്യനെ നിരീക്ഷിക്കുമ്പോൾ ഏറ്റവും പെട്ടെന്ന് ശ്രദ്ധയിൽപ്പെടുന്ന സവിശേഷതകൾ സൗരകളങ്കങ്ങളാണ്‌, സൗരോപരിതലത്തിലെ മറ്റു ഭാഗങ്ങളേക്കാൾ താപനില കുറഞ്ഞതായതിനാൽ ഇരുണ്ട് കാണപ്പെടുന്ന ഭാഗങ്ങളാണിവ. ശക്തമായ കാന്തിക പ്രവർത്തനങ്ങളുള്ള മേഖലകളാണ്‌ സൗരകളങ്കങ്ങൾ, ശക്തമായ കാന്തികക്ഷേത്രങ്ങൾ സം‌‌വഹനത്തെ തടസ്സപ്പെടുത്തുന്നതുവഴി അന്തർഭാഗത്ത് നിന്നുള്ള ഊർജ്ജം ഉപരിതലത്തിലെ അത്തരം ഭാഗങ്ങളിൽ എത്തുന്നത് കുറയുന്നു. കാന്തിക്ഷേത്രങ്ങൾ കൊറോണയെ ശക്തമായി ചൂടാക്കുകയും ചെയ്യും, ഇത് സൗരജ്വാലകൾക്ക് സൃഷ്ടിക്കപ്പെടുന്ന സജീവമേഖലകൾക്കും കൊറോണയിൽ നിന്നുമുള്ള പിണ്ഡ പ്രവാഹങ്ങൾക്കും (coronal mass ejections) കാരണമാകുന്നു. ഏറ്റവും വലിയ സൗരകളങ്കങ്ങൾ ആയിരക്കണക്കിന്‌ കിലോമീറ്ററുകൾ വരെ വിസ്താരമുള്ളവയായിരിക്കും.[75]

എണ്ണം ഒരേ അളവിലല്ല സൗരകളങ്കൾ ദൃശ്യമാകുന്നത്, ചാക്രികമായി 11 വർഷം കൂടുമ്പോൾ അവ വ്യത്യാസപ്പെടുന്നു, ഈ കാലയളവിനെ സൗരചക്രം എന്നു വിളിക്കുന്നു. സൗരചക്രത്തിന്റെ തുടക്കത്തിൽ ഏറ്റവും കുറച്ച് സൗരകളങ്കൾ മാത്രമേ ഉണ്ടാകുകയുള്ളൂ, ചിലപ്പോൾ ഒന്നും ഉണ്ടായില്ലെന്നും വരാം. അവ പ്രത്യക്ഷപ്പെടുക ഉയർന്ന അക്ഷാംശങ്ങളിലുമായിരിക്കും. സൗരചക്രത്തിൽ മുന്നോട്ട് പോകുന്തോറും സൗരകളങ്കങ്ങളുടെ എണ്ണം വർദ്ധിക്കുകയും അവ മധ്യരേഖയോട് അടുക്കുകയും ചെയ്യുന്നു, ഈ പ്രതിഭാസം സ്പ്യൂറേർസ് നിയമം (Spörer's law) വഴി വിശദീകരിക്കപ്പെട്ടിരിക്കുന്നു. വിപരീത കാന്തികധ്രുവങ്ങളോടുകൂടിയ ജോഡികളായിട്ടാണ്‌ സൗരകളങ്കങ്ങൾ സാധാരണ പ്രത്യക്ഷപ്പെടാറ്. തുടക്കത്തിൽ പ്രത്യക്ഷമാകുന്ന സൗരകളങ്കത്തിന്റെ പൊളാരിറ്റിയും ഒരോ ചക്രത്തിലും മാറിവരുന്നു, അതുവഴി ഉത്തര കാന്തികധ്രുവത്തിലാണ്‌ നിലവിൽ പ്രത്യക്ഷപ്പെട്ടതെങ്കിൽ അടുത്ത തവണ അത് ദക്ഷിണ കാന്തികധ്രുവത്തിൽ പ്രത്യക്ഷമാകുന്നു.[76]

കഴിഞ്ഞ 250 വർഷക്കാലത്തിൽ നിരീക്ഷിക്കപ്പെട്ട സൗരകളങ്കളുടെ വിവരങ്ങൾ, പതിനൊന്നു വർഷത്തോളം ദൈഘ്യമുള്ള സൗരചക്രങ്ങൾ ഇതിൽ കാണിച്ചിരിക്കുന്നു.

ബഹിരാകാശ കാലാവസ്ഥയിൽ വലിയ സ്വാധീനം ചെലുത്തുന്നതാണ്‌ സൗരചക്രം, സൂര്യന്റെ പ്രകാശതീവ്രതയുമായി നേരിട്ട് ബന്ധമുള്ളതിനാൽ ഇത് ഭൂമിയിലെ കാലാവസ്ഥയിലും വലിയ സ്വാധീനം ചെലുത്തുന്നു. സൗരപ്രവർത്തനങ്ങൾ കുറഞ്ഞ അവസരങ്ങളിൽ താപനില കുറഞ്ഞ അവസ്ഥയും സൗരചക്രത്തിന്റെ പകുതി കടന്നതിനു ശേഷം താപനില കൂടുതലുമാകുന്നു. പതിനേഴാം നൂറ്റാണ്ടിൽ ഏതാനും ദശകങ്ങളോളം സൗരചക്രങ്ങൾ പൂർണ്ണമായി നിലക്കുകയുണ്ടായി; ആ കാലയളവിൽ വളരെ കുറച്ച് സൗരകളങ്കങ്ങൾ മാത്രമാണ്‌ ഉണ്ടായത്. യൂറോപ്പിൽ വളരെ തണുത്ത കാലാവസ്ഥ അനുഭവപ്പെടുകയും അത് ചെറുഹിമയുഗം എന്നറിപ്പെടുകയുമുണ്ടായി.[77] വൃക്ഷത്തടികളിലെ വളയങ്ങൾ വിശകലനം ചെയ്യുകവഴി അതിനു മുമ്പ് സംഭവിച്ച കുറഞ്ഞ സൗരകളങ്കങ്ങളുള്ള അവസ്ഥ കണ്ടുപിടിക്കാൻ കഴിഞ്ഞു, ശരാശരി ആഗോള താപനിലയേക്കാൾ കുറഞ്ഞ അവസ്ഥയാണ്‌ അത്തരം ഘട്ടങ്ങളിൽ ഉണ്ടായിരുന്നതെന്ന് കാണപ്പെടുകയും ചെയ്തു.[78]

ദൈർഘ്യമുള്ള ചക്രങ്ങളുടെ സാധ്യത[തിരുത്തുക]

അടുത്ത് കാലത്ത് രൂപപ്പെടുത്തിയ സിദ്ധാന്തപ്രകാരം, 41,000 അല്ലെങ്കിൽ 1,00,000 വർഷങ്ങൾ വരെ ദൈർഘ്യത്തോടെ സൂര്യന്റെ കാമ്പിൽ കാന്തികപരമായ ഏറ്റക്കുറച്ചിലുകൾ സംഭവിക്കാറുണ്ട്. മിലങ്കോവിച്ച് ചക്രങ്ങളേക്കാൾ (Milankovitch cycles) ഹിമയുഗങ്ങൾക്ക് വിശദീകരണം ഇതിനു നൽകാൻ കഴിയുമെന്ന് കരുതുന്നു.[79][80]

ജീവിതചക്രം[തിരുത്തുക]

ഒരു ഹൈഡ്രജൻ വാതക മേഘം സാന്ദ്രീകരിച്ചാണ്‌ 457 കോടി വർഷങ്ങൾക്കുമുൻപ് സൂര്യൻ രൂപപ്പെട്ടത്.[81] സൂര്യന്റെ രൂപവത്കരണ കാലഘട്ടം രണ്ട് വിധത്തിലാണ്‌ കണക്കാക്കിയിരിക്കുന്നത്: നക്ഷത്രപരിണാമങ്ങളുടെ കമ്പ്യൂട്ടർ മാതൃകകൾ, ന്യൂക്ലിയോകോസ്മോക്രൊണോളജി എന്നിവയുടെ സഹായത്താൽ മുഖ്യശ്രേണിയിലെ സൂര്യന്റെ സ്ഥാനം കണക്കാക്കിയാണ്‌ ഒന്നാമത്, ഇത് പ്രകാരം 457 കോടി വർഷങ്ങൾ എന്നത് ലഭിക്കുന്നു.[82] ഇതേ ഫലത്തോട് ചേർന്നുതന്നെയാണ്‌ ഏറ്റവും പഴക്കം ചെന്ന സൗരയൂഥപദാർത്ഥങ്ങളുടെ റേഡിയോമെട്രിക്ക് ഡേറ്റിങ്ങ് അനുസരിച്ചുള്ള ഫലവും, ഇതുപ്രകാരം 456.7 കോടി വർഷം പഴക്കം എന്നാണ്‌ ലഭിക്കുന്നത്.[83][84]

കാമ്പിൽ നടക്കുന്ന അണുസം‌യോജനം വഴി ഹൈഡ്രജൻ അണുക്കൾ ഹീലിയമാക്കി മാറ്റുന്ന മുഖ്യശ്രേണിയിൽ പകുതികാലം പിന്നിട്ടതാണ്‌ സൂര്യൻ. സൂര്യന്റെ കാമ്പിൽ ഓരോ സെക്കന്റിലും 4 ദശലക്ഷം ടണ്ണിലധികം ദ്രവ്യം ഊജ്ജമായി മാറ്റപ്പെടുന്നു, ഇത് ന്യൂട്രിനോകളും സൗരവികിരണവും സൃഷ്ടിക്കുന്നു; ഈ നിരക്കനുസരിച്ച് സൂര്യൻ ഇതുവരെ 100 ഭൗമപിണ്ഡത്തിനു തുല്യമായ ദ്രവ്യത്തെ ഊർജ്ജമാക്കി മാറ്റിയിരിക്കണം. സൂര്യൻ മുഖ്യശ്രേണിയിലെ നക്ഷത്രമായി ചെലവഴിക്കുന്ന മൊത്തം കാലയളവ് 1000 കോടി വർഷമാണ്‌.[85]

ജീവിതാന്ത്യത്തിൽ ഒരു സൂപ്പർനോവയായി പൊട്ടിത്തെറിക്കുവാനാവശ്യമായ പിണ്ഡം സൂര്യനില്ല. കാമ്പിലെ ഹൈഡ്രജൻ ഇന്ധനം ഉപയോഗിച്ചുതീരുമ്പോൾ കാമ്പ് ചുരുങ്ങുകയും ചൂടുപിടിക്കുകയും തൽഫലമായി പുറംപാളികൾ വികസിച്ച് ചുവപ്പുഭീമൻ എന്ന ഘട്ടത്തിൽ പ്രവേശിക്കുകയും ചെയ്യും. കാമ്പിലെ താപനില 10 കോടി കെൽവിനായി വർദ്ധിക്കുമ്പോൾ ഹീലിയം അണുസം‌യോജനവും അതുവഴി കാർബൺ ഉല്പാദനവും ആരംഭിക്കും, ഇതോടെ സൂര്യൻ ചെറുതും ഇടത്തരവുമായ നക്ഷത്രങ്ങളുടെ വികസിച്ചുള്ള അസിം‌പ്റ്റോടിക്ക് ജയന്റ് ബ്രാഞ്ച് (Asymptotic giant branch) എന്ന ഗണത്തിൽ പ്രവേശിക്കും.[26]

സൂര്യന്റെ ജീവിതചക്രം; വലിപ്പങ്ങൾ ആനുപാതികമല്ല.

ആ അവസരത്തിൽ ഭൂമിയുടെ അവസ്ഥ വളരെ മോശമായിരിക്കും, ഭീമൻ രൂപത്തിലാകുന്നതോടെ സൂര്യന്റെ വ്യാസാർദ്ധം 250 മടങ്ങ് വർദ്ധിച്ച് ഭൂമിയുടെ പരിക്രമണപഥം കടക്കും.[86] അസിം‌പ്റ്റോട്ടിക്ക് ജയന്റ് ബ്രാഞ്ച് നക്ഷത്രം ആകുന്നതോടെ സൗരക്കാറ്റുകൾ വഴി പിണ്ഡത്തിന്റെ 30 ശതമാനം നഷ്ടപ്പെട്ടിരിക്കും, അതു കാരണം ഗ്രഹങ്ങളുടെ പരിക്രമണപഥങ്ങൾ പുറത്തേക്ക് വികസിക്കും. അങ്ങനെയാണെങ്കിൽ ഭൂമി പൂർണ്ണമായി നശിക്കില്ല, പക്ഷേ വലിവു പ്രവർത്തനങ്ങൾക്ക് വിധേയമായി സൂര്യൻ ഭൂമിയെ വിഴുങ്ങുമെന്നാണ്‌ പുതിയ ഗവേഷണങ്ങൾ കാണിക്കുന്നത്.[86] പൂർണ്ണമായി കത്തിയെരിയുന്നതിൽ നിന്നും രക്ഷപ്പെടുകയാണെങ്കിലും അത്യധികമായ താപം വഴി ഭൂമിയിലെ ജലം മുഴുവനും ബാഷ്പീകരിക്കപ്പെട്ട് നഷ്ടപ്പെടും, അന്തരീക്ഷത്തിന്റെ സിംഹഭാഗവും ബഹിരാകാശത്തേക്ക് രക്ഷപ്പെടും. സത്യത്തിൽ നിലവിലെ മുഖ്യശ്രേണിയിലെ അവസ്ഥയിലും ഒരോ നൂറ് കോടി വർഷത്തിലും 10% എന്ന നിരക്കിൽ സൂര്യന്റെ തിളക്കം വർദ്ധിക്കുന്നുണ്ട്. ഉപരിതല താപനിലയും പതുക്കെ ഉയരുന്നുണ്ട്. മുൻപ് സൂര്യന്റെ തിളക്കം ഇന്നുള്ളതിലും കുറവായിരുന്നു, അതായിരിക്കാം നൂറ് കോടി വർഷത്തിനുള്ളിൽ മാത്രമായി ഭൂമിയിൽ ജീവൻ ആരംഭിച്ചതിനുള്ള കാരണം. അടുത്ത് നൂറ് കോടി വർഷത്തിനുള്ളിൽതന്നെ സൗരതാപനിലയിൽ വലിയ വർദ്ധനവുണ്ടാകും, ഇത് ഭൂമിയിൽ ജലം ദ്രാവകരൂപത്തിൽ നിലകൊള്ളുന്നതിനെ പ്രതികൂലമായി ബാധിക്കുകയും എല്ലാ ജീവകണികകളുടേയും നാശത്തിലേക്ക് നയിക്കുകയും ചെയ്തേക്കാം.[86][87]

ചുവപ്പ് ഭീമൻ എന്ന അവസ്ഥയെ തുടർന്നുണ്ടാകുന്ന സ്പന്ദനങ്ങൾ കാരണം സൂര്യന്റെ പുറം പാളികൾ അകന്ന് പോവുകയും ഒരു ഗ്രഹനീഹാരിക രൂപപ്പെടുകയും ചെയ്യും. ബാഹ്യപാളികൾ ഊരിത്തെറിച്ചു പോയതിനു ശേഷം അവശേഷിക്കുക വളരെയധികം താപനിലയുള്ള കാമ്പ് മാത്രമായിരിക്കും, കോടിക്കണക്കിന് വർഷങ്ങൾ പതുക്കെ മങ്ങിക്കൊണ്ട് വെള്ളക്കുള്ളൻ എന്നറിയപ്പെടുന്ന ഈ അവസ്ഥയിൽ സൂര്യൻ തുടരും. ഇതുതന്നെയാണ്‌ ചെറുതും ഇടത്തരവുമായ നക്ഷത്രങ്ങളുടെ ജീവിത പരിണാമം.[88][89] വെള്ളക്കുള്ളൻ എന്ന അവസ്ഥ വളരെക്കാലം തുടർന്നാൽ താപം പൂർണ്ണമായി നഷ്ടപ്പെട്ട് കറുത്ത കുള്ളൻ എന്ന അവസ്ഥയിലെത്തുമെന്ന് കരുതപ്പെടുന്നു,[90] പക്ഷേ അതിനെടുക്കുന്ന സമയം നിലവിലെ പ്രപഞ്ചത്തിന്റെ പ്രായത്തേക്കാൾ നീണ്ടതായിരിക്കുമെന്നാണ്‌ അനുമാനം, ഇതുവരെ കറുത്ത കുള്ളൻ നക്ഷത്രങ്ങളെ കണ്ടെത്താൻ കഴിഞ്ഞിട്ടുമില്ല.[91]

സൂര്യപ്രകാശം[തിരുത്തുക]

ഭൂമിയിലെ ഊർജ്ജത്തിന്റെ പ്രാഥമിക സ്രോതസ്സ് സൂര്യനിൽ നിന്നും വരുന്ന പ്രകാശമാണ്‌. ഭൂമിയിലെ ഒരു യൂണിറ്റ് സ്ഥലത്ത് സൂര്യൻ നേരിട്ട് നിക്ഷേപിക്കുന്ന പവർ ആണ്‌ സൗരസ്ഥിരാങ്കം (solar constant). ഒരു സൗരസ്ഥിരാങ്കം 1,368 W/m2 നു തുല്യമാണ്‌, ഒരു ആസ്ട്രോണമിക്കൽ യൂണിറ്റ് അകലത്ത് നിന്നും സൂര്യനിൽ നിന്നും വരുന്ന പവർ ആണിത്.[92] ഭൗമാന്തരീക്ഷത്തിൽക്കൂടി വരുന്നതുവഴി ഈ അളവിൽ കുറവ് വരുന്നുണ്ട്, ഭൗമോപരിതലത്തിൽ തെളിഞ്ഞ അന്തരീക്ഷത്തിൽ സൂര്യൻ മൂർദ്ധന്യസ്ഥാനത്തായിരിക്കുമ്പോൾ ഇത് ഏകദേശം 1,000 W/m2 ആണ്‌.[93]

പ്രകൃതിദത്തമോ കൃത്രിമമോ ആയ മാർഗ്ഗങ്ങൾ വഴി സൂര്യപ്രകാശം ഉപയോഗപ്പെടുത്താൻ കഴിയും. സസ്യങ്ങൾ പ്രകാശസംശ്ലേഷണം വഴി സൂര്യപ്രകാശത്തിലെ ഊർജ്ജം ആഗിരണം ചെയ്യുകയും രാസസം‌യുക്തങ്ങൾ സൃഷ്ടിച്ച് ഊർജ്ജം രാസോർജ്ജമായി മാറ്റുകയും ചെയ്യുന്നു. സൗരോർജ്ജം സ്വീകരിച്ച് പ്രവർത്തിചെയ്യുവാനുതകുന്ന വൈദ്യുതോർജ്ജം ഉല്പാദിപ്പിക്കുന്നതിന്‌ നേരിട്ടുള്ള താപം സ്വീകരിക്കുകയോ സോളാർ പാനലുകൾ ഉപയോഗിക്കുകയോ ചെയ്യുന്നു. പൗരാണിക കാലത്തെ സസ്യങ്ങൾ പ്രകാശസംശ്ലേഷണം വഴി ശേഖരിച്ച ഊർജ്ജമാണ്‌ പെട്രോളിയം പോലെയുള്ള ഖനിജ ഇന്ധനങ്ങളിൽ സംഭരിക്കപ്പെട്ടിരിക്കുന്നത്.[94]

സൗരോർജ്ജം[തിരുത്തുക]

സൂര്യനിൽ നിന്നുള്ള പ്രകാശവും ചൂടുമാണ് സൗരോർജ്ജം സൗരോർജ്ജം ഉപയോഗിച്ച് നമുക്ക് വൈദ്യുതി ഉല്പാദനം സാധ്യമാണ്. സൗരവികിരണവും അതിന്റെ അതിന്റെ ഫലമായുള്ള കാറ്റ്, തിരമാല, ജലവൈദ്യുതി, ജൈവാവശിഷ്ടം തുടങ്ങിയവയെല്ലാം പുനരുപയോഗ ഊർജ്ജ സ്രോതസ്സുകളിൽപ്പെടുന്നു. സൂര്യനിൽ നിന്നും വരുന്ന ഊർജ്ജത്തിന്റെ വളരെ ചെറിയ ഭാഗം മാത്രമേ ഉപയോഗിക്കപ്പെടുന്നുള്ളൂ.സൗരോർജ വിമാനം വികസിപ്പിക്കാനുള്ള യൂറോപ്യൻ പദ്ധതിയാണ് സോളാർ ഇംപൾസ് പദ്ധതി

താരാപഥത്തിനുള്ളിലെ സ്ഥാനവും ചലനവും[തിരുത്തുക]

സൗരയൂഥത്തിന്റെ ബാരിസെന്ററിന്റെ സൂര്യന്‌ ആപേക്ഷികമായുള്ള ചലനം.

ഗ്രഹങ്ങൾ സൂര്യനുമേൽ ചെലുത്തുന്ന സ്വാധീനങ്ങൾ സൗരയൂഥത്തിന്റെ പിണ്ഡകേന്ദ്രത്തെച്ചുറ്റിയുള്ള സൂര്യന്റെ സഞ്ചാരത്തെ സങ്കീർണ്ണമാക്കുന്നുണ്ട്. ഏതാനും നൂറ് വർഷങ്ങൾ കൂടുമ്പോൾ ഈ ചലനം പുരോഗതിയായും പശ്ചാത്ഗതിയായും മാറിവരുന്നു.[95] ക്ഷീരപഥത്തിന്റെ അകത്തേ വളയത്തിലെ ഓറിയോൺ ഭുജത്തോട് ചേർന്നുള്ള ലോക്കൽ ഫ്ലഫ് എന്ന നക്ഷത്രാന്തര മേഘത്തിലാണ്‌ സൂര്യൻ സ്ഥിതിചെയ്യുന്നത്. താരാപഥ കേന്ദ്രത്തിൽ നിന്നും 7.5-8.5 കിലോ പാർസെക് (25,000–28,000 പ്രകാശവർഷങ്ങൾ) ദൂരത്തിലാണ്‌ ഈ സ്ഥാനം.[96][97][98][99] ജെമിംഗ (Geminga) എന്ന നക്ഷത്രത്തിന്റെ സൂപ്പർനോവ സൃഷ്ടിച്ചിരിക്കാൻ സാധ്യതയുള്ള ലോക്കൽ ബബിൾ (Local Bubble) എന്ന വാതക കുമിളയ്ക്കകത്താണ്‌ സൂര്യൻ ഉള്ളത്.[100] ക്ഷീരപഥത്തിൽ ഇതിനു പുറത്തുള്ള ഭുജത്തിലേക്കുള്ള ദൂരം 6,500 പ്രകാശവർഷങ്ങളാണ്‌.[101] ക്ഷീരപഥത്തിൽ സൗരയൂഥം നിലകൊള്ളുന്ന മേഖലയെ ശാസ്ത്രജ്ഞർ ആവാസയോഗ്യ മേഖല (habitable zone) എന്നു വിളിക്കുന്നു.

ക്ഷീരപഥത്തിനകത്ത് സഞ്ചരിക്കുന്ന ദിശയുടെ മുനമ്പ് സോളാർ ഏയ്പെക്സ് (solar apex) എന്നറിയപ്പെടുന്നു. അയംഗിതി രാശിയിലുള്ള വേഗ നക്ഷത്രത്തിന്റെ നേരെയായാണ്‌ സൂര്യന്റെ ചലനം, ഈ ചലനത്തിന്‌ താരാപഥ കേന്ദ്രവുമായി 60 ഡിഗ്രി കോണളവാണുള്ളത്. സൂര്യനോട് ഏറ്റവും സമീപത്തുള്ള നക്ഷത്ര വ്യൂഹമായ ആൽഫാ സെന്റൗറിയിൽ നിന്നും വീക്ഷിക്കുകയാണെങ്കിൽ സൂര്യൻ കാശ്യപി നക്ഷത്രരാശിയിലായാണ്‌ കാണപ്പെടുക.[102]

താരാപഥകേന്ദ്രത്തിനു ചുറ്റുമുള്ള സൂര്യന്റെ പരിക്രമണം ഏതാണ്‌ ദീർഘവൃത്തപാതയിലൂടെയായിരിക്കുമെന്ന് കരുതപ്പെടുന്നു, താരാപഥ ഭുജങ്ങൾ, ദ്രവ്യത്തിന്റെ അനിയത വിതരണങ്ങൾ എന്നിവ കാരണമായി പാതയിൽ അല്പസ്വല്പം ചാഞ്ചാട്ടം ഉണ്ടായേക്കാം. കൂടാതെ താരാപഥ തലത്തിൽ സൂര്യൻ ആന്ദോളനം ചെയ്യുന്നുണ്ട് ഇത് ഒരു പരിക്രമണത്തിന്‌ ഏതാണ്ട് 2.7 തവണ എന്ന നിരക്കിലാണിത്. ഉയർന്ന സാന്ദ്രതയുള്ള താരാപഥ ഭുജങ്ങളിലൂടെ കടന്നു പോകുമ്പോൾ ഉൽക്കാവർഷവും കൂട്ടിയിടിയും കൂടുതലായിരിക്കാമെന്നതിനാൽ അത്തരം കാലഘട്ടങ്ങളിൽ ഭൂമിയിൽ വലിയ ജീവനാശം സംഭവിക്കാൻ കാരണമാകും എന്ന വാദമുണ്ട്.[103] സൗരയൂഥം ക്ഷീരപഥത്തിനു ചുറ്റും ഒരു പരിക്രമണം പൂർത്തിയാക്കാൻ 22.5-25 കോടി വർഷങ്ങൾ എടുക്കും.[104] ഇതുപ്രകാരം സൂര്യൻ ഇതുവരെ 20 മുതൽ 25 വരെ തവണ മാത്രമേ പരിക്രമണം നടത്തിയിട്ടുണ്ടാകൂ. സെക്കന്റിൽ 251 km എന്ന വേഗതയിലാണ്‌ സൗരയൂഥം താരാപഥകേന്ദ്രത്തെ വലം വയ്ക്കുന്നത്.[105] ഈ വേഗതയിൽ ഒരു പ്രകാശവർഷം സഞ്ചരിക്കുവാൻ 1,400 വർഷങ്ങൾ എടുക്കും, ഒരു ആസ്ട്രോണമിക്കൽ യൂണിറ്റ് സഞ്ചരിക്കുവാൻ എട്ട് ദിവസവും.[106]

സൈദ്ധാന്തികമായ പ്രശ്നങ്ങൾ[തിരുത്തുക]

സൗര ന്യൂട്രിനോ പ്രശ്നം[തിരുത്തുക]

സൂര്യനിൽ നിന്നും വരുന്ന ഇലക്ട്രോൺ ന്യൂട്രിനോകളുടെ എണ്ണം കുറേ വർഷങ്ങളോളം ഭൂമിയിലെ ഡിറ്റക്റ്ററുകളുപയോഗിച്ച് കണക്കാക്കിയപ്പോൾ ലഭിച്ചിരുന്നത് സ്റ്റാൻഡേർഡ് സോളാർ മോഡൽ ഉപയോഗിച്ച് കണക്കുകൂട്ടിയതിന്റെ മൂന്നിലൊന്നു മുതൽ പകുതിവരെ മാത്രമായിരുന്നു. ഈ വിചിത്രമായ ഫലമാണ്‌ സൗര ന്യൂട്രിനോ പ്രശ്നം എന്ന പേരിൽ അറിയപ്പെട്ടത്. സിദ്ധാന്തങ്ങൾ പ്രധാനമായും രണ്ടുവിധത്തിലാണ്‌ ഈ പ്രശ്നത്തെ പരിഹരിക്കാൻ ശ്രമിച്ചത്, കുറഞ്ഞ ന്യൂട്രിനോ ബലരേഖകൾക്ക് കാരണം സൗരാന്തർഭാഗത്തെ കുറഞ്ഞ താപനിലയാണെന്നതായിരുന്നു അതിലൊന്ന്, ഇലക്ട്രോൺ ന്യൂട്രിനോകൾക്ക് ആന്ദോളനം ചെയ്യാനാവും അതുവഴി അവ സൂര്യനിൽ നിന്നും ഭൂമിയിലേക്കുള്ള സഞ്ചാരമധ്യേ ടൗ, മ്യുഓൺ ന്യൂട്രിനോകളായി മാറുന്നു എന്നതായിരുന്നു മറ്റൊന്ന്.[107] സൗര ന്യൂട്രിനോ ബലരേഖകൾ കൃത്യമായി അളക്കുന്നതിന്‌ 1980 കളിൽ സഡ്ബറി ന്യൂട്രിനോ ഒബ്സെർവേറ്ററി, കമിയോകാൻഡെ തുടങ്ങി നിരവധി ഡിറ്റക്റ്ററുകൾ തയ്യാറാക്കപ്പെട്ടിരുന്നു.[108] അവയിൽ നിന്നുള്ള നിരീക്ഷണങ്ങൾ ന്യൂട്രിനോകൾക്ക് വളരെ ചെറിയ ഒരു നിശ്ചലപിണ്ഡമുണ്ടെന്നും അവ ആന്ദോളനം ചെയ്യുന്നുണ്ടെന്നുമുള്ള വസ്തുതകളിലേക്ക് വിരൽ ചൂണ്ടുന്നവയായിരുന്നു.[109][45] 2001 ൽ സഡ്ബറി ന്യൂട്രിനോ ഒബ്സെർവേറ്ററി ഉപയോഗിച്ച് മൂന്നു തരത്തിലുമുള്ള ന്യൂട്രിനോകളെ നേരിട്ട് ഡിറ്റക്റ്റ് ചെയ്യുവാൻ സാധിക്കുകയുണ്ടായി, ആ നിരീക്ഷണപ്രകാരം സൂര്യനിൽ നിന്നും വരുന്ന ന്യൂട്രിനോകളുടെ അളവ് സ്റ്റാൻഡാർഡ് സോളാർ മോഡൽ പ്രകാരമുള്ളത് തന്നെയാണെന്ന് കണ്ടെത്തുകയും ചെയ്തു, ഡിറ്റക്റ്റ് ചെയ്ത ന്യൂട്രിനോകളുടെ മൂന്നിലൊരു ഭാഗം ഇലക്ട്രോൺ ന്യൂട്രിനോകളുമായിരുന്നു.[108][110] ഇതെല്ലാം ദ്രവ്യങ്ങളിൽ ന്യൂട്രിനോകളുടെ ആന്ദോളനം വിശദീകരിക്കുന്ന മിഖിയേവ്-സിമിമോവ്-വോൾഫെൻസ്റ്റീൻ പ്രഭാവം പ്രകാരം യോജിക്കുന്ന തരത്തിലുമായിരുന്നു. അതോടെ സൗര ന്യൂട്രിനോ പ്രശ്നം പരിഹരിക്കപ്പെട്ടതായി കണക്കാക്കപ്പെട്ടു.[108]

കൊറോണ തപീകരണ പ്രശ്നം[തിരുത്തുക]

സൂര്യന്റെ പ്രകാശം പുറപ്പെടുന്ന ഉപരിതലമായ പ്രഭാമണ്ഡലത്തിലെ താപനില ഏതാണ്ട് 6,000 കെൽ‌വിനാണ്. ഇതിനു മുകളിലാണ് സൂര്യന്റെ കൊറോണ സ്ഥിതി ചെയ്യുന്നത്, കോറോണയിലെ താപനില 10-20 ലക്ഷം കെൽവിൻ വരെയായി ഉയരുന്നുണ്ട്.[55] പ്രഭാമണ്ഡലത്തിൽ നിന്നും നേരിട്ടുള്ള സം‌വഹനം വഴിയല്ലാതെ എന്തോ ഒന്ന് കൊറോണയെ ചൂടുപിടിപ്പിക്കുന്നുണ്ടെന്നാണ് അവിടെയുള്ള ഉയർന്ന താപനില സൂചിപ്പിക്കുന്നത്.[57] പ്രഭാമണ്ഡലത്തിനടിയിലുള്ള സം‌വഹനമേഖലയിലെ പ്രക്ഷുബ്ധ ചലനങ്ങളാണ് കൊറോണയിലെ താപം വർദ്ധിപ്പിക്കുവാനാവശ്യമായ ഊർജ്ജം നൽകുന്നതെന്നാണ് കരുതപ്പെടുന്നത്, പ്രധാനമായും രണ്ട് പ്രവർത്തനങ്ങളെയാണ്‌ കൊറോണ തപീകരണത്തെ വിശദീകരിക്കാൻ മുന്നോട്ട് വയ്ക്കപ്പെട്ടിരിക്കുന്നത്.[55] ഒന്നാമത്തേത് തരംഗ താപീകരണമാണ്‌, സം‌വഹന മേഖലയിലെ പ്രക്ഷുബ്ദ ചലനങ്ങൾ ഉല്പാദിപ്പിക്കുന്ന ഗുരുത്വം അല്ലെങ്കിൽ മാഗ്നെറ്റോഹൈഡ്രോഡൈനാമിക്ക് തരംഗങ്ങൾ വഴി.[55] ഈ തരംഗങ്ങൾ മുകൾഭാഗത്തേക്ക് സഞ്ചരിക്കുകയും കൊറോണയിൽ വ്യാപിച്ച് അവിടെയുള്ള വാതകങ്ങളിൽ ഊർജ്ജം താപത്തിന്റെ രൂപത്തിൽ നിക്ഷേപിക്കുന്നു.[111] മറ്റൊന്ന് കാന്തിക താപീകരണമാണ്‌, ഫോട്ടോസ്ഫെറിക്ക് ചലനങ്ങളാലും കാന്തിക പുനർബന്ധനം വഴി സൃഷ്ടിക്കപ്പെടുന്ന പലവലിപ്പത്തിലുള്ള സൗരജ്വാലകൾ വഴിയും സ്വതന്ത്രമാക്കപ്പെടുന്ന ഊർജ്ജം വഴിയുള്ള താപീകരണം.[112]

തരംഗങ്ങൾ വഴിയുള്ള താപീകരണം ഫലപ്രദമാണോ എന്ന കാര്യത്തിൽ നിലവിൽ വ്യക്തതയില്ല. ആൽഫ്‌വെൻ തരംഗങ്ങൾ ഒഴികെയുള്ള തരംഗങ്ങളെല്ലാം തന്നെ കൊറോണയിലെത്തുന്നതിനു മുൻപായി ക്ഷയിക്കുന്നതായാണ്‌ കണ്ടെത്തുന്നത്.[113] മാത്രവുമല്ല ആൽഫ്‌വെൻ തരംഗങ്ങൾ കൊറോണയിൽ പെട്ടെന്ന് വ്യാപിക്കുന്നുമില്ല. ഇക്കാരണങ്ങളാൽ നിലവിലെ ഗവേഷണങ്ങൾ സൗരജ്വാലകൾ വഴിയുള്ള താപീകരണത്തെ ഉദ്ദേശിച്ചാണ്‌ നടത്തപ്പെടുന്നത്.[55]

പ്രായം കുറഞ്ഞ സൂര്യന്റെ തിളക്കമില്ലായ്മ പ്രശ്നം[തിരുത്തുക]

സൈദ്ധാന്തികമായി തയ്യാറാക്കിയ സൂര്യന്റെ മാതൃകകൾ പ്രകാരം 380 കോടി വർഷം മുൻപ് മുതൽ 250 കോടി വർഷം മുൻപ് വരെ, അതായത് ആർക്കീയൻ കാലഘട്ടത്തിൽ (Archean period), സൂര്യന്‌ ഇന്നുള്ളതിന്റെ 75 ശതമാനം മാത്രമേ തിളക്കമുണ്ടായിരുന്നുള്ളൂ. അത്തരത്തിൽ ശേഷി കുറഞ്ഞ സൂര്യന്‌ ഭൗമോപരിതലത്തിൽ ജലത്തെ ദ്രാവക രൂപത്തിൽ നിലനിർത്താനാവുകയില്ല. പക്ഷേ ഭൗമശാസ്ത്രപരമായ നിരീക്ഷണങ്ങൾ വെളിവാക്കുന്നത് ഭൂമിയിൽ ആ കാലയളവിലെല്ലാം ഏതാണ്ട് ഒരേ താപനിലയായിരുന്നു എന്നാണ്‌, കൂടാതെ ഭൂമി പ്രായം കുറഞ്ഞ അവസ്ഥയിൽ ഇന്നത്തേക്കാളും ചൂടുള്ളതുമായിരുന്നു. ഇതിനു പരിഹാരമായി ശാസ്ത്രജ്ഞർ എത്തിയിരിക്കുന്ന നിഗമനം ഇതാണ്‌, അന്നത്തെ അവസ്ഥയിൽ ഭൂമിയുടെ അന്തരീക്ഷത്തിൽ ഇന്നത്തേതിനേക്കാളും വലിയ അളവിൽ കാർബൺ ഡയോക്സൈഡ്, മീഥെയ്ൻ, അമോണിയ പോലെയുള്ള ഹരിതഗൃഹവാതകങ്ങൾ ഉണ്ടായിരുന്നു, അത്തരം വാതകങ്ങൾ സൗരോർജ്ജത്തിൽ നിന്നുമുള്ള താപത്തെ പിടിച്ചു നിർത്തിയിരുന്നതുവഴി താപത്തിന്റെ അഭാവം പരിഹരിക്കപ്പെട്ടു.[114]

നിലവിലെ ക്രമരാഹിത്യങ്ങൾ[തിരുത്തുക]

ഇപ്പോഴും ചില കാര്യങ്ങളിൽ സൂര്യൻ പ്രതീക്ഷിക്കുന്നതിൽ നിന്ന് വിഭിന്നമായി പെരുമാറാറുണ്ട്.[115][116]

  • കഴിഞ്ഞ രണ്ട് ദശകങ്ങളായി സൗരക്കാറ്റിന്റെ വേഗതയിൽ മൂന്ന് ശതമാനവും, താപനിലയിൽ 13 ശതമാനവും സാന്ദ്രതയിൽ 20 ശതമാനവും കുറവുവന്നിട്ടുണ്ട്.
  • സൂര്യന്റെ കാന്തികക്ഷേത്രത്തിലും വലിയ കുറവ് നിലവിലുണ്ട്. ഇതു കാരണം സൗരയൂഥത്തെ പൊതിഞ്ഞു നിൽക്കുന്ന ഹീലിയോസ്ഫിയർ ചുരുങ്ങിയിരിക്കുന്നു. തൽഫലമായി ഭൂമിയിലും ഭൗമാന്തരീക്ഷത്തിലും എത്തിച്ചേരുന്ന കോസ്മിക് കിരണങ്ങളുടെ അളവ് വർദ്ധിച്ചിട്ടുണ്ട്.

നിരീക്ഷണ ചരിത്രം[തിരുത്തുക]

മുൻകാല ധാരണകൾ[തിരുത്തുക]

ചക്രവാളത്തിലെ ഏറ്റവും പ്രകാശമേറിയ വസ്തു എന്ന നിലക്ക് മനുഷ്യൻ വളരെയധികം സൂര്യനെ ശ്രദ്ധിച്ചു. അതിന്റെ സാന്നിദ്ധ്യം പകലും അസാന്നിദ്ധ്യം രാവും സൃഷ്ടിക്കുന്നതും അവൻ നിരീക്ഷിച്ചു. ചരിത്രാതീത കാലത്തേയും പുരാതന കാലത്തേയും സംസ്കാരങ്ങൾ സൂര്യനെ ഒരു ദേവനായി കരുതിയിരുന്നു. സൂര്യനെ ആരാധിക്കുക എന്നത് പല സമൂഹങ്ങളിലും നിലനിന്നിരുന്നു, ഭാരതീയർ, ഇൻകന്മാർ, ആസ്ടെക്കുകൾ എന്നിവർ ഇങ്ങനെ സൂര്യനെ ആരാധിച്ചിരുന്നവരാണ്‌. പല പുരാതന നിർമ്മിതികളും സൗരപ്രതിഭാസങ്ങളെ ഉദ്ദേശിച്ച് നിർമ്മിക്കപ്പെട്ടിട്ടുണ്ട്. അയനാന്തങ്ങൾ കൃത്യമായി കാണിക്കുന്ന ശിലാനിർമ്മിതികളും ലോകത്തിന്റെ പലഭാഗത്തും നിർമ്മിക്കപ്പെട്ടു. ഈജിപ്റ്റിലെ നബ്ത പ്ലായ (Nabta Playa) മാൾട്ടയിലെ നജ്ദ്ര (Mnajdra) ഇംഗ്ലണ്ടിലെ സ്റ്റോൺഹെഞ്ച് എന്നിവിടങ്ങളിലുള്ളത് ഇത്തരം ശിലാനിർമ്മിതികളാണ്‌. ഭൂമിയിൽ നിന്ന് നിരീക്ഷിക്കുമ്പോൾ ഒരു വർഷം കൊണ്ട് രാശിചക്രത്തിലൂടെ സഞ്ചാരം ഒരു തവണ പുർത്തികരിക്കുന്നതായി കാണപ്പെടുന്നു, ഇതനുസരിച്ച് ഗ്രീക്കുകാർ സൂര്യനെ ഏഴ് ഗ്രഹങ്ങളിലൊന്നായി കണക്കാക്കി. ആഴ്ചയിലെ ഒരോ ദിവസത്തിനും ഏഴ് ഗ്രഹങ്ങളുടെ പേരുകളാണ്‌ പിന്നീട് പല സംസ്കാരങ്ങളും നൽകിയത്.[117][118][119]

ശാസ്ത്രീയ അറിവിലുള്ള മുന്നേറ്റം[തിരുത്തുക]

സൂര്യന്‌ ശാസ്ത്രീയവിവരണങ്ങൾ നൽകുവാൻ ശ്രമിച്ച ആദ്യകാല വ്യക്തികളിലൊരാളാണ്‌ ഗ്രീക്ക് തത്ത്വചിന്തകനായ അനെക്സാഗൊറസ്. സൂര്യൻ ഹീലിയോസിന്റെ രഥമല്ലെന്നും പീലോപൊണ്ണെസസിനേക്കാൾ (അക്കാലത്തെ അറിയപ്പെട്ട ഗ്രീക്ക് പ്രദേശങ്ങളെ മൊത്തത്തിൽ വിളിക്കുന്ന പേര്) വലുതുപോലുമാകാവുന്ന ജ്വലിക്കുന്ന ഒരു ലോഹ ഗോളമാണെന്നുമാണ്‌ അദ്ദേഹം വിശദീകരിച്ചത്.[120] അദ്ദേഹത്തിന്റെ വാദങ്ങൾ മറ്റുള്ളവരെ പഠിപ്പിച്ചതിന്‌ ഭരണാധികാരികൾ അദ്ദേഹത്തെ തടവിലാക്കുകയും വധശിക്ഷ വിധിക്കുകയും ചെയ്തു. പിന്നീട് പെരിക്കിൾസിന്റെ ഇടപെടലിനെ തുടർന്ന് സ്വതന്ത്രമാക്കപ്പെടുകയായിരുന്നു.

സൂര്യന്റെ വികേന്ദ്രത മാറുന്നുണ്ടെന്ന് അൽ ബതാനിയെ പോലെയുള്ള മധ്യകാല അറേബ്യൻ ജ്യോതിശാസ്ത്രജ്ഞർ കണ്ടെത്തിയിരുന്നു,[121] വലിയ ആസ്ട്രോലാബ് ഉപയോഗിച്ച് ഇബ്നു യൂനുസ് വർഷങ്ങളോളമെടുത്ത് സൂര്യനെ നിരീക്ഷിച്ച് പതിനായിരത്തിൽ കൂടുതൽ നിരീക്ഷണങ്ങൾ രേഖപ്പെടുത്തുകയും ചെയ്തു.[122]

പുരാതന ഗ്രീക്ക്, ഇന്ത്യൻ ബാബിലോണിയൻ, മധ്യകാല അറേബ്യൻ കാലഘട്ടങ്ങളിൽ ജീവിച്ചിരുന്ന ശാസ്ത്രജ്ഞരിൽ ചിലർ സൂര്യനെ കേന്ദ്രമാക്കി ഗ്രഹങ്ങൾ കറങ്ങുന്ന ഒരു വ്യവസ്ഥ മുന്നോട്ടുവച്ചിരുന്നു. പതിനാറാം നൂറ്റാണ്ടിൽ കോപ്പർനിക്കസ്സാണ്‌ ഈ കഴ്ചപ്പാടിന്‌ വീണ്ടും ഒരു ജീവൻ നൽകിയത്. പതിനേഴാം നൂറ്റാണ്ടിൽ ആദ്യകാലത്ത് ദൂരദർശിനി കണ്ടുപിടിച്ചതോടെ തോമസ് ഹാരിയറ്റ്, ഗലീലിയോ ഗലീലി തുടങ്ങിയവർ സൗരകളങ്കങ്ങൾ നിരീക്ഷിക്കുകയുണ്ടായി. ഗലീലിയോ ആണ്‌ പാശ്ചാത്യരിൽ ആദ്യമായി സൗരകളങ്കം നിരീക്ഷിച്ചു രേഖപ്പെടുത്തിയത്, അവ സൂര്യന്റെ ഉപരിതലത്തിലുള്ളതാണെന്നും അല്ലാതെ ഭൂമിക്കും സൂര്യനും ഇടയിലായി നീങ്ങുന്ന വസ്തുക്കളല്ലെന്നും അദ്ദേഹം സമർത്ഥിച്ചു.[123] ഹാൻ ഭരണകാലത്തെ ചൈനീസ് ജ്യോതിശാസ്ത്രജ്ഞർ, ഇബ്നു റുഷ്ദ്[124] തുടങ്ങിയവർ ഇതിനു മുൻപ് സൗരകളങ്കങ്ങളെ നിരീക്ഷിച്ച് വിശദീകരണങ്ങൾ നൽകിയിരുന്നു.

1672 ൽ ഗിയോവനി കാസ്സിനി, ജീൻ റിച്ചർ എന്നിവർക്ക് ബുധനിലേക്കുള്ള ദൂരം കണ്ടുപിടിക്കാൻ സാധിക്കുകയുണ്ടായി ഇത് സൂര്യനിലേക്കുള്ള ദൂരം കണ്ടുപിടിക്കുന്നതിലേക്കും നയിച്ചു. ഐസക് ന്യൂട്ടൺ പ്രിസമുപയോഗിച്ച് സൂര്യപ്രകാശത്തെ നിരീക്ഷണ വിധേയമാക്കുകയും അത് പല വർണ്ണങ്ങൾ അടങ്ങിയതാണെന്ന് കാണിച്ചു തരികയും ചെയ്തു.[125] 1800 ൽ വില്ല്യം ഹേർഷെൽ സൗര വർണ്ണരാജിയിൽ ചുവപ്പിനപ്പുറമുള്ള ഇൻഫ്രാറെഡ് വികിരണത്തെ കണ്ടെത്തി.[126] 1800 കളിൽ സൂര്യന്റെ സ്പെക്രോസ്കോപ്പി പഠനങ്ങളിൽ വലിയ മുന്നേറ്റമുണ്ടായി, ജോസഫ് വോൺ ഫ്രൗൺഹോഫർ സൂര്യന്റെ അവശോഷണരേഖകളിൽ ആദ്യത്തെ നിരീക്ഷണങ്ങൾ നടത്തുകയുണ്ടായി, സൂര്യന്റെ അവശോഷണ രേഖകളിൽ ഏറ്റവും പ്രബലമായതിനെ ഫ്രൗൺഹോഫർ രേഖകൾ എന്ന് വിളിക്കാറുണ്ട്.

ആധുനിക ശാസ്ത്രത്തിന്റെ ആദ്യകാലത്ത് സൂര്യന്റെ ഊർജ്ജത്തിന്റെ ഉറവിടമെന്തെന്നത് ഒരു വലിയ ചോദ്യമായിരുന്നു. ദ്രാവക രൂപത്തിലുള്ള സൂര്യൻ അതിന്റെ ആന്തരിക താപം വികിരണം ചെയ്തുകൊണ്ട് തണുക്കുകയാണെന്നായിരുന്നു കെൽവിൻ പ്രഭുവിന്റെ അനുമാനം.[127] ശേഷം ഈ ഊർജ്ജോല്പാദന നിരക്കിനെ വിശദീകരിക്കാൻ കെൽവിൻ, ഹെർമെൻ വോൺ ഹെൽമോൾട്ട്സ് എന്നിവർ ചേർന്ന് കെൽവിൻ-ഹെൽമോൾട്ട്സ് മെക്കാനിസം മുന്നോട്ടുവച്ചു. നിർഭാഗ്യവശാൽ അതുവഴി ലഭിക്കുന്ന ഫലമനുസരിച്ച് സൂര്യൻ വെറും രണ്ട് കോടി വർഷം മാത്രമേ താപം വികിരണം ചെയ്യുകയുള്ളൂ, അക്കാലത്ത് നടത്തപ്പെട്ട ഭൗമശാസ്ത്ര പഠനപ്രകാരം അത് കുറഞ്ഞത് 30 കോടി വർഷമെങ്കിലും എന്നതായിരുന്നു.[127] 1890 ൽ സൗരവർണ്ണരാജിയിൽ ഹീലിയത്തെ കണ്ടെത്തിയ ജോസഫ് ലോക്കെയ്‌ർ ഉൽക്കകൾ വഴിയുള്ള സൂര്യന്റെ രൂപവത്കരണവും പരിണാമവും എന്ന ആശയം മുന്നോട്ടുവച്ചു.[128]

ശേഷം 1904 വരെ ഇക്കാര്യത്തിൽ വലിയ പുരോഗതിയൊന്നുമുണ്ടായില്ല. സൂര്യൻ പുറത്തുവിടുന്ന വികിരണങ്ങൾ അതിന്റെ അന്തർഭാഗത്തുള്ള ഏതെങ്കിലും താപോർജ്ജ സ്രോതസ്സിൽ നിന്നായിരിക്കാമെന്ന് അക്കാലത്ത് ഏണസ്റ്റ് റൂഥർഫോർഡ് അനുമാനിക്കുകയും, ആ സ്രോതസ്സ് റേഡിയോ ആക്റ്റീവ് ക്ഷയം ആയിരിക്കമെന്നും അദ്ദേഹം അഭിപ്രായപ്പെടുകയും ചെയ്തു.[129] പക്ഷേ പിൽക്കാലത്ത് ഇതിന്‌ ശരിയായ രീതിയിൽ വിശദീകരണം നൽകിയത് ആൽബെർട്ട് ഐൻസ്റ്റൈനായിരുന്നു, അദ്ദേഹത്തിന്റെ ദ്രവ്യ-ഊർജ്ജ സമവാക്യമായ E = mc2 ഉപയോഗിച്ച് ഇതിന് വിശദീകരണം നൽകി.[130]

സൂര്യന്റെ കാമ്പിലെ മർദ്ദവും താപനിലയും കാരണമായി ഹൈഡ്രജൻ അണുകേന്ദ്രങ്ങൾ (പ്രോട്ടോണുകൾ) ഹീലിയം അണുകേന്ദ്രമായി മാറുന്ന ആണവ സം‌യോജനത്തിൽ പിണ്ഡത്തിലുണ്ടാകുന്ന വ്യത്യാസം വഴിയുണ്ടാകുന്ന ഊർജ്ജമാണിതെന്ന ആശയം 1920 ൽ ആർതർ എഡിങ്ങ്ടൺ മുന്നോട്ടുവച്ചു.[131] വന്യമായ അളവിൽ ഹൈഡ്രജൻ സൂര്യനിലുണ്ടെന്ന് 1925 ൽ സെസിലിയ പേയ്ൻ (Cecilia Payne) സ്ഥിരീകരിച്ചു. അണുസം‌യോജനത്തിന്റെ സൈദ്ധാന്തികമായ പരികല്പന 1930 ൽ ജ്യോതിർഭൗതികജ്ഞരായ സുബ്രമണ്യൻ ചന്ദ്രശേഖറും ഹാൻസ് ബെഥെയും (Hans Bethe) വികസിപ്പിച്ചെടുത്തു. സൂര്യനിലെ ഊർജ്ജോല്പാദനം നടത്തുന്ന രണ്ട് പ്രധാനപ്പെട്ട അണുസം‌യോജനങ്ങളുടെ നിർദ്ധാരണങ്ങൾ ബെഥെ തയ്യാറാക്കുകയും ചെയ്തു.[132][133]

അവസാനമായി 1957 ൽ മാർഗരറ്റ് ബർബിഡ്ജ് "നക്ഷത്രങ്ങളിലെ മൂലകങ്ങളുടെ സംശ്ലേഷണം"(Synthesis of the Elements in Stars) എന്ന ഗവേഷണപ്രബന്ധം പ്രസിദ്ധീകരിച്ചു.[134] പ്രപഞ്ചത്തിലെ മൂലകങ്ങളിൽ ഭൂരിഭാഗവും സൂര്യനെ പോലെയുള്ള നക്ഷത്രങ്ങളിലെ ആണവപ്രവർത്തനങ്ങൾ വഴി സംശ്ലേഷണം ചെയ്യപ്പെടുന്നവയാണെന്നായിരുന്നു ആ പ്രബന്ധത്തിൽ വിശദീകരിച്ചിരുന്നത്.

സൗര ബഹിരാകാശ പദ്ധതികൾ[തിരുത്തുക]

സൂര്യന്റെ മുന്നിലൂടെ കടന്നുപോകുന്ന ചന്ദ്രൻ. 2007 ഫെബ്രുവരി 25 ന്‌ സ്റ്റീരിയോ ബി പേടകം പകർത്തിയ ചിത്രം. പേടകം ഭൂമിക്ക് പിറകിൽ ചന്ദ്രനേക്കാളും അകലെയായതിനാൽ ചിത്രത്തിൽ ചന്ദ്രൻ സൂര്യനേക്കാൾ ചെറുതായി കാണപ്പെടുന്നു.[135]

1959 നും 1968 നും ഇടയിൽ വിക്ഷേപിക്കപ്പെട്ട പയനീർ 5, 6, 7, 8, 9 എന്നിവയായിരുന്നു സൂര്യനെ ആദ്യമായി നിരീക്ഷിച്ച ഉപഗ്രഹങ്ങൾ. സൂര്യനെ ഭൂമിക്ക് സമാനമായ അകലത്തിൽ പരിക്രമണം ചെയ്തതുകൊണ്ട് ഈ പേടകങ്ങൾ സൗരക്കാറ്റിന്റെയും സൗര കാന്തികക്ഷേത്രത്തിന്റെയും വിവരങ്ങൾ ശേഖരിച്ചു. പയനീർ 9 താരതമ്യേന നീണ്ടകാലം, 1987 വരെ, വിവരങ്ങൾ അയച്ചിരുന്നു.[136]

1970 ൽ ഹീലിയോസ് ബഹിരാകാശപേടകവും സ്കൈലാബിലെ അപോളോ ടെലിസ്കോപ്പ് മൗണ്ടും ശാസ്ത്രജ്ഞർക്ക് സൗരക്കാറ്റിനെക്കുറിച്ചും സൂര്യന്റെ കൊറോണയെക്കുറിച്ചുമുള്ള പുതിയ വിവരങ്ങൾ നൽകുകയുണ്ടായി. അമേരിക്കൻ-ജർമ്മൻ സം‌യുക്ത സം‌രംഭങ്ങളായിരുന്നു ഹീലിയോസ് 1, 2 ബഹിരാകാശപേടകങ്ങൾ, ബുധന്റെ പരിക്രമണപഥത്തിനകത്ത് ഉപസൗരത്തോട് ചേർന്നാണ്‌ അവ നിരീക്ഷണങ്ങൾ നടത്തിയത്.[137] 1973 ൽ നാസ വിക്ഷേപിച്ച ബഹിരാകാശനിലയമായിരുന്നു സ്കൈലാബ്, ഇതിലെ ബഹിരാകാശവാസികൾ പ്രവർത്തിപ്പിച്ചിരുന്ന നിരീക്ഷണ ഉപകരണമായിരുന്നു അപോളോ ടെലിസ്കോപ്പ് മൗണ്ട്.[56] സൂര്യന്റെ സംക്രമണ മേഖലയുടെ നിരീക്ഷണ വിവരങ്ങളും കൊറോണയുടെ അൽട്രാവയലറ്റ് വികിരണങ്ങളുടേയും വിവരങ്ങളും സ്കൈലാബ് വഴി ശേഖരിച്ചു.[56] കൊറോണൽ ട്രാൻസിയെന്റ് എന്നറിയപ്പെടുന്ന കൊറോണൽ മാസ്സ് ഇജക്ഷനുകൾ, സൗരക്കാറ്റിനോട് ബന്ധപ്പെട്ടതാണെന്ന് പിന്നീട് മനസ്സിലാക്കിയ കൊറോണയിലെ ദ്വാരങ്ങൾ എന്നിവ അതുവഴിയുള്ള കണ്ടുപിടിത്തങ്ങളിൽ പെടുന്നു.[137]

1980 ൽ നാസ സോളാർമാക്സ് എന്ന പേടകം വിക്ഷേപിച്ചു. സൗരപ്രവർത്തനം ശക്തമാകുന്ന സന്ദർഭങ്ങളിൽ വരുന്ന സൗരജ്വാലകളിലെ ഗാമാ കിരണങ്ങൾ, എക്സ്-കിരണങ്ങൾ അൾട്രാവയലറ്റ് വികിരണങ്ങൾ എന്നിവയെല്ലാം നിരീക്ഷിക്കുവാൻ വേണ്ടി രൂപകല്പന ചെയ്തതായിരുന്നു ഈ പേടകം. പക്ഷേ വിക്ഷേപിച്ചതിന്‌ ഏതാനും മാസങ്ങൾക്ക് ശേഷം ഉണ്ടായ ഒരു ഇലക്ട്രോണിക് തകരാറ് വഴി പേടകം സ്റ്റാൻഡ്ബൈ മോഡിലാകുകയും അടുത്ത മൂന്നു വർഷത്തോളം നിഷ്ക്രിയാവസ്ഥയിലാകുയുമുണ്ടായി. 1984 ൽ നടത്തിയ ചലഞ്ചൽ സ്പേസ് ഷട്ടിൽ മിഷനിൽ (STS-41C) പേടകത്തെ കണ്ടെത്തുകയും തകരാർ പരിഹരിച്ച് പരിക്രമണ പാതയിൽ തിരിച്ച് വിടുകയും ചെയ്തു. ഇതിനുശേഷം സോളാർമാക്സ് 1989 ജൂണിൽ ഭൗമാന്തരീക്ഷത്തിലേക്ക് തിരിച്ചു പ്രവേശിക്കുന്നതിനു മുൻപായി സൗര കൊറോണയുടെ ആയിരക്കണക്കിന്‌ ചിത്രങ്ങൾ എടുത്തയക്കുകയും ചെയ്യുകയുണ്ടായി.[138]

1991 ൽ വിക്ഷേപിക്കപ്പെട്ട ജപ്പാന്റെ യോഹ്ഖോ (Yohkoh) സൗരജ്വാലകളെ എക്സ്-കിരണ തരംഗദൈർഘ്യത്തിൽ നിരീക്ഷിക്കുകയുണ്ടായി, ഇത് വ്യത്യസ്ത തരത്തിലുള്ള സൗരജ്വാലകളെ തിരിച്ചറിയുവാൻ ശാസ്ത്രജ്ഞരെ സഹായിക്കുകയും മുൻപ് അനുമാനിക്കപ്പെട്ടതിൽ നിന്നും വ്യത്യസ്തമായി ഉയർന്ന സൗരപ്രവർത്തനങ്ങളിൽ നിന്നും അകലെയുള്ള കൊറോണയുടെ ഭാഗങ്ങൾ കൂടുതൽ ചലനാത്മകവും സജീവവുമാണെന്നും കാണിച്ചു തരികയും ചെയ്തു. ഒരു സൗരചക്രകാലം മുഴുവനും യോഹ്ഖോ നിരീക്ഷണങ്ങൾ നടത്തിയിരുന്നു, പക്ഷേ അതിനുശേഷം 2001 ൽ ഉണ്ടായ സൂര്യഗ്രഹണത്തിൽ സൂര്യന്‌ നേർക്കുള്ള ഇതിന്റെ ക്രമീകരണത്തിൽ വ്യത്യാസം സംഭവിച്ചതിനെ തുടർന്ന് സ്റ്റാൻഡ്ബൈ മോഡിൽ ആയിത്തീർന്നു. 2005 ൽ അന്തരീക്ഷത്തിൽ തിരികെ പ്രവേശിച്ചതോടെ നശിക്കുകയും ചെയ്തു.[139]

ഇതുവരെ നടത്തിയ സൗര നിരീക്ഷണ സം‌രംഭങ്ങളിൽ വളരെയധികം പ്രധാന്യമർഹിക്കുന്നതാണ്‌ 1995 ഡിസംബർ 2 ന്‌ നാസയും യൂറോപ്യൻ സ്പേസ് ഏജൻസിയും സം‌യുക്തമായി വിക്ഷേപിച്ച സോളാർ ആൻഡ് ഹീലിയോസ്ഫെറിക്ക് ഒബ്സെർവേറ്ററി (Solar and Heliospheric Observatory അഥവാ SOHO).[56] രണ്ട് വർഷത്തെ കാലവധിയായിരുന്നു ഉദ്ദേശിച്ചതെങ്കിലും നിലവിലും (2009 പ്രകാരം) ഇത് പ്രവർത്തനനിരതമാണ്‌. ഇതിനെ പിന്തുടരുന്ന ഒരു പദ്ധതിയായ സോളാർ ഡൈനാമിക്സ് ഒബ്സെർവേറ്ററി 2010 ഫെബ്രുവരി 3 ന് വിക്ഷേപിക്കാൻ പദ്ധതിയിട്ടുമുണ്ട്.[140] ഭൂമിക്കും സൂര്യനുമിടയിൽ അവ രണ്ടിന്റെയും ഗുരുത്വ വലിവ് തുല്യമായി വരുന്ന ലഗ്രാഞ്ചിയൻ പോയിന്റിൽ നിന്ന് സൂര്യനെ നിരീക്ഷിക്കുന്ന സോഹൊ വിക്ഷേപിച്ചത് മുതൽ വ്യത്യസ്ത തരംഗദൈർഘ്യങ്ങളിൽ സൂര്യന്റെ സ്ഥിരതയോടെയുള്ള നിരീക്ഷണങ്ങൾ നൽകിയിട്ടുണ്ട്.[56] സൂര്യനെ നേരിട്ട് നിരീക്ഷിക്കുന്നത് കൂടാതെ ഈ പേടകം വളരെയധികം വാൽനക്ഷത്രങ്ങളെ കണ്ടെത്തുന്നതിലും സഹായിച്ചിട്ടുണ്ട്, വളരെ ചെറിയ വാൽനക്ഷത്രങ്ങൾ സൂര്യനെ സമീപിക്കുമ്പോൾ കത്തിയെരിയുന്നതും സോഹോ നിരീക്ഷണ വിധേയമാക്കിയിട്ടുണ്ട്.[141]

മുകളിൽ വിവരിച്ച നിരീക്ഷണ പേടകങ്ങളെല്ലാം തന്നെ സൂര്യനെ ക്രാന്തിവൃത്തത്തിന്റെ തലത്തിലൂടെയാണ് നിരീക്ഷിച്ചത്, അതിനാൽ തന്നെ അവ മധ്യരേഖ ഭാഗമാണ്‌ വിശദമായ നിരീക്ഷണങ്ങൾക്ക് വിധേയമാക്കിയിരുന്നത്. 1990 ൽ വിക്ഷേപിക്കപ്പെട്ട യുലിസ്സെസ് പേടകം സൂര്യന്റെ ധ്രുവങ്ങളെ പഠനവിധേയമാക്കുവാൻ ഉദ്ദേശിച്ചുള്ളതായിരുന്നു. ക്രാന്തിവൃത്തത്തിന്റെ തലത്തിൽ നിന്നും ഏറെ ഉയരുന്നതിനു വേണ്ടി ആദ്യം ഇത് വ്യാഴത്തിനടുത്തേക്കാണ്‌ സഞ്ചരിച്ചത്, വ്യാഴത്തിന്റെ ഗുരുത്വാകർഷണം പ്രയോജനപ്പെടുത്തി ഗ്രാവിറ്റേഷനൽ സ്ലിങ്ങ്ഷോട്ട് (slingshot) നടത്തുവാനായിരുന്നു ഇത്. അപ്രതീക്ഷിതമായാണെങ്കിലും പേടകത്തിന്റെ പരിക്രമണപഥം 1994 ൽ ഷുമാക്കർ-ലെവി 9 ധൂമകേതു വ്യാഴവുമായി കൂട്ടിയിടിക്കുന്നത് കൃത്യമായി പകർത്താൻ പാകത്തിലുള്ളതായിരുന്നു. തീരുമാനിക്കപ്പെട്ട പരിക്രമണപഥത്തിലെത്തിയതിനു ശേഷം പേടകം സൂര്യന്റെ ഉയർ അക്ഷാംശങ്ങളിൽ നിന്നുമുള്ള സൗരക്കാറ്റുകളെയും കാന്തികക്ഷേത്ര ബലത്തേയും നിരീക്ഷിക്കുവാൻ തുടങ്ങി, സൂര്യന്റെ ഉയർന്ന അക്ഷാംശങ്ങളിൽ നിന്നുള്ള സൗക്കാറ്റുകൾ ഏതാണ്ട് 750 കി.മീ./സെക്കന്റ് എന്ന വേഗതയിലാണെന്ന് കണ്ടെത്തി, ഇത് നേരത്തെ അനുമാനിക്കപ്പെട്ടതിനേക്കാൾ കുറഞ്ഞ വേഗതയായിരുന്നു, ഉയർന്ന അക്ഷാംശങ്ങളിൽ നിന്നും ഉയർന്ന അളവിൽ കാന്തിക തരംഗങ്ങൾ പുറപ്പെടുന്നുണ്ടെന്നും അവ താരാപഥ കോസ്മിക് കിരണങ്ങളെ വിസരണം ചെയ്യുന്നുവെന്നും കണ്ടെത്തുകയുമുണ്ടായി.[142]

പ്രഭാമണ്ഡലത്തിലെ മൂലകങ്ങളുടെ വിതരണം സ്പെക്ട്രോസ്കോപ്പിക് പഠനങ്ങൾ വഴി നന്നായി മനസ്സിലാക്കാൻ സാധിച്ചിട്ടുണ്ടെങ്കിലും ആന്തരീക ഭാഗത്തെ ചേരുവകളെ കുറച്ച് മാത്രമാണ്‌ അറിഞ്ഞിട്ടുള്ളത്. സൗരക്കാറ്റിലെ ദ്രവ്യത്തെ ശേഖരിച്ച് അവയെ ജ്യോതിശാസ്ത്രജ്ഞർക്ക് നേരിട്ട് പഠിക്കുന്നതിനായി ജെനിസിസ് എന്ന ബഹിരാകാശപേടകം രൂപകല്പന ചെയ്ത് അയക്കുകയുണ്ടായി. 2004 ജെനിസിസ് ഭൂമിയിലേക്ക് തിരിച്ചെത്തിയെങ്കിലും ഭൗമാന്തരീക്ഷത്തിലൂടെ പാരച്ച്യൂട്ട് വഴിയുള്ള തിരിച്ചിറക്കൽ പരാജയപ്പെട്ടതിനെ തുടർന്ന നടത്തിയ ഇടിച്ചിറക്കലിൽ സാരമായ കേടുപാടുകൾ സംഭവിച്ചു. എങ്കിലും ഏതാനും ഉപയോഗപ്രദമായ സാമ്പിളുകൾ പേടകത്തിൽ നിന്നും കണ്ടെത്തുവാൻ കഴിഞ്ഞിട്ടുണ്ട്, അവ നിലവിൽ വിശകലനങ്ങൾക്ക് വിധേയമാക്കികൊണ്ടിരിക്കുകയുമാണ്‌.[143]

2006 ഒക്ടോബറിൽ വിക്ഷേപണം നടന്ന പദ്ധതിയാണ്‌ സോളാർ ടെറസ്ട്രിയൽ റിലേഷൻസ് ഒബ്സെർവേറ്ററി (Solar Terrestrial Relations Observatory, STEREO). ഒരേപോലെയുള്ള രണ്ട് പേടകങ്ങളാണ്‌ ഈ പദ്ധതിയിലുള്ളത് അവ ഭൂമിക്ക് മുന്നിലും പിന്നിലുമാകുന്ന രീതിയിൽ വരുന്ന പരിക്രമണപഥത്തിലാണ്‌ വിക്ഷേപിക്കപ്പെട്ടിരിക്കുന്നത്. അതുവഴി സൂര്യന്റെയും കോറോണൽ മാസ്സ് ഇജക്ഷൻ പോലെയുള്ള സൗരപ്രതിഭാസങ്ങളുടേയും സ്റ്റീരിയോസ്കോപ്പിക് ചിത്രീകരണം സാധ്യമാകുന്നു.[144][145]

നിരീക്ഷണവും ഫലവും[തിരുത്തുക]

ഭൗമോപരിതലത്തിലെ ഒരു ഛായാഗ്രഹിയുടെ ലെൻസിലൂടെയുള്ള സൂര്യന്റെ കാഴ്ച

വളരെ തീവ്രമാണ്‌ സൂര്യപ്രകാശം. അതിനാൽ തന്നെ ചെറിയ സമയത്തേക്ക് പോലും നഗ്നനേത്രങ്ങൾകൊണ്ട് സൂര്യനെ നേരിട്ട് നോക്കുന്നത് വേദനയുളവാക്കും, പക്ഷേ ഇറുകിയ കണ്ണുകൾ കൊണ്ട് നോക്കുന്നത് അത്ര ഹാനികരമല്ല.[146][147] സൂര്യനെ നേരിട്ട് നോക്കുന്നത് ഭാഗിക അന്ധതയ്ക്ക് കാരണമാകുന്നു. അങ്ങനെ നോക്കുന്നതുവഴി ഏതാണ്ട് 4 മില്ലിവാട്ടോളം സൂര്യപ്രകാശം റെറ്റിനയിൽ പതിക്കുന്നു, ഇത് ആ ഭാഗത്തെ അല്പം ചൂടുപിടിക്കുകയും നേത്രത്തിന്‌ കേടുവരുത്തുകയും തീവ്രപ്രകാശത്തോടുള്ള കണ്ണിന്റെ പ്രതികരണശേഷി നഷ്ടപ്പെടുത്തുകയും ചെയ്യും.[148][149] അൾട്രാവയലറ്റ് കിരണങ്ങൾ തുടർച്ചയായി ഏൽക്കുന്നതുവഴി കണ്ണിന്റെ ലെൻസിന്‌ മഞ്ഞനിറമേൽക്കുന്നു, ഇത് തിമിരത്തിന്‌ കാരണമാകുന്നതായി കരുതപ്പെടുന്നു, പക്ഷേ ഇത് സൂര്യനെ നേരിട്ട് നിരീക്ഷിക്കുന്നത് കൂടാതെ പൊതുവായി സൂര്യപ്രകാശത്തിലെ അൾട്രാവയലറ്റ് കിരണങ്ങളേൽക്കുന്നതു വഴിയും ഉണ്ടാകുന്നതാണ്‌.[150] നീണ്ട സമയത്തേക്ക് (ഏതാണ്ട് 100 സെക്കന്റ്) സൂര്യനെ നഗ്നനേത്രം കൊണ്ട് നിരീക്ഷിക്കുന്നതുവഴി, പ്രത്യേകിച്ച് സൂര്യനിൽ നിന്നുള്ള അൾട്രാവയലറ്റ് കിരണങ്ങൾ തീവ്രമായ സന്ദർഭങ്ങളിൽ, അൾട്രാവയലറ്റ് ഏൽക്കുന്നത് വഴി റെറ്റിനയ്ക്ക് പരിക്കേൽക്കുന്നു:[151][152] പ്രായം കുറഞ്ഞവരുടെ കണ്ണുകളും മനുഷ്യനിർമ്മിത ലെൻസുകളും കൂടുതൽ അൾട്രാവയലറ്റ് കിരണങ്ങളെ കടത്തിവിടുന്നതിനാൽ സൂര്യൻ മൂർദ്ധന്യാവസ്ഥയിലാരിക്കുമ്പോഴോ അതിനടുത്ത നിലയിലായിരിക്കൂമ്പോഴോ റെറ്റിനയ്ക്ക് പരിക്കേൽക്കാനുള്ള സാധ്യത കൂടുതലാണ്‌.

പ്രകാശ കേന്ദ്രീകരണം നടത്തുന്ന ബൈനോക്കുലർ പോലെയുള്ള ഉപകരണങ്ങളിലൂടെ അൾട്രാവയലറ്റ് കിരണങ്ങളെ തടയുന്നതോ സൂര്യപ്രകാശത്തിന്റെ തീവ്രത കുറക്കുന്നതോ പോലെയുള്ള ഫിൽട്ടറില്ലാതെ സൂര്യനെ നോക്കുന്നത് അത്യന്തം അപകടകരമാണ്‌. അൾട്രാവയലറ്റിനെ തടയാത്തതിനാൽ നാച്ചുറൽ ഡെൻസിറ്റി ഫിൽട്ടർ ഉപയോഗിക്കുന്നതും അപകടകരമാണ്‌.[153] ഫിൽട്ടർ ഇല്ലാതെ ബൈനോക്കുലറിലൂടെ നോക്കുന്നത് നഗ്നനേത്രങ്ങൾകൊണ്ട് നോക്കുന്നതിനേക്കാൾ 500 ഇരട്ടി ഊർജ്ജം കണ്ണിന്റെ റെറ്റിനയിൽ നിക്ഷേപിക്കുന്നു, ഇത് റെറ്റിനയിലെ കോശങ്ങളെ ഞൊടിയിടയിൽ തന്നെ നശിപ്പിച്ചുകളയും. മദ്ധ്യാഹ്ന സമയത്തെ സൂര്യനെ ഫിൽട്ടർ കൂടാതെ ബൈനോക്കുലർ വഴി ഇടവിട്ടു നോക്കുന്നത് പൂർണ്ണമായ അന്ധത വരുത്തുന്നു.[154]

കണ്ണ് അസാധാരണമായ ഉയർന്ന ദൃശ്യതീവ്രതയോട് പെട്ടെന്ന് പൊരുത്തപ്പെടാത്തതിനാൽ കാഴ്ചയിലെ മൊത്തം പ്രകാശത്തിന്റെ അളവ് കുറയുന്നതിനനുസരിച്ച് കൃഷ്ണമണി വികസിക്കുന്നു അതിനാൽ തന്നെ ഭാഗിക സൂര്യഗ്രഹണം നേരിട്ട് നോക്കുന്നതും അപകടകരമാണ്‌. ഭാഗിക സൂര്യഗ്രഹണ സമയത്ത് സൂര്യപ്രകാശത്തിന്റെ വലിയൊരു ഭാഗവും ചന്ദ്രനാൽ തടയപ്പെടുന്നു, പക്ഷേ മറയ്ക്കപ്പെടാത്ത പ്രഭാമണ്ഡലത്തിന്റെ ഭാഗത്തിന്‌ സാധാരണ ദിവസങ്ങളിലേതു പോലെയുള്ള ഉപരിതല തീവ്രത തന്നെയാണുണ്ടാവുക. ആ ഇരുണ്ട അവസ്ഥയിൽ കൃഷ്ണമണി ഏതാണ്ട് 2 മി.മീ. മുതൽ 6 മി.മീ. വരെ വികസിക്കുകയും സൂര്യബിംബം പതിയുന്ന റെറ്റിനയിലെ ഓരോ കോശവും സൂര്യഗ്രഹണമില്ലാത്ത അവസ്ഥയേക്കാൾ പത്തിരട്ടി പ്രകാശവും സ്വീകരിക്കുകയും ചെയ്യുന്നു. ഇത് ആ കോശങ്ങളെ ഭാഗികമായോ പൂർണ്ണമായോ നശിപ്പിക്കുന്നു, ഇതിന്റെ ഫലമായി ആ വ്യക്തിയിൽ സ്ഥിരമായി ഒരു അന്ധബിന്ദു രൂപപ്പെടുന്നു.[155]വേദന അനുഭവപ്പെടാത്തതിനാലും കാഴ്ചശക്തി നശിപ്പിക്കപ്പെട്ടു എന്ന് പെട്ടെന്ന് മനസ്സിലാകാൻ സാധിക്കാത്തതിനാലും അറിവില്ലാത്തവരിലും കുട്ടികളിലും ഇതുവഴിയുള്ള അപകടത്തിന്‌ സാധ്യത കൂടുതലാണ്‌.

സൂര്യോദയ അസ്തമയ സമയങ്ങളിൽ ഭൗമാന്തരീക്ഷത്തിലൂടെ ദീർഘദൂരം സഞ്ചരിക്കുന്നതുവഴി സൂര്യപ്രകാശം ദുർബ്ബലപ്പെടുന്നു (Rayleigh scattering and Mie scattering),[156] അത്തരം സന്ദർഭങ്ങളിൽ നഗ്നനേത്രങ്ങൾ കൊണ്ട് വീക്ഷിക്കാവുന്ന വിധത്തിൽ സൂര്യൻ മങ്ങിയതായിരിക്കും (സൂര്യൻ മേഘങ്ങൾക്കിടയിൽ മറഞ്ഞിരിക്കുന്നതിൽ നിന്ന് പെട്ടെന്ന് പുറത്തുവരാവുന്ന സന്ദർഭങ്ങളായിരിക്കരുത്). ഫോഗ്, മൂടൽ മഞ്ഞ് എന്നിവയും അന്തരീക്ഷത്തിലെ പൊടിപടലങ്ങളും ഉയർന്ന ആർദ്രതയും ഇതുപോലെ അന്തരീക്ഷത്തിൽ സൂര്യപ്രകാശത്തിന്‌ ക്ഷീണം സംഭവിക്കുന്നതിന്‌ കാരണമാകുന്ന ഘടകങ്ങളാണ്‌.[157]

അപൂർവ്വമായി സൂര്യാസ്തമയത്തിനു തൊട്ട് ശേഷമോ സൂര്യോദയത്തിന്‌ തൊട്ടുമുമ്പായോ സംഭവിക്കാവുന്ന പ്രകാശ പ്രതിഭാസമാണ്‌ ഗ്രീൻ ഫ്ലാഷ്. അസ്തമിച്ച് ചക്രവാളത്തിന്‌ അല്പം താഴ്ന്ന സൂര്യനിൽ നിന്നുള്ള പ്രകാശം വളഞ്ഞ് വീക്ഷകനിലേക്കെത്തിച്ചേരുന്നതുവഴിയണ്‌ ഈ പ്രതിഭാസം അരങ്ങേറുന്നത്. സൂര്യപ്രകാശത്തിലെ തരംഗദൈർഘ്യം കുറഞ്ഞ (വയലറ്റ്, നീല, പച്ച) പ്രകാശഭാഗങ്ങൾ തരംഗദൈർഘ്യം കൂടിയവയേക്കാൾ കൂടുതൽ വളഞ്ഞ് സഞ്ചരിക്കുന്നു, പക്ഷേ വയലറ്റ്, നീല എന്നീ നിറങ്ങൾ കൂടുതൽ വിസരണത്തിന്‌ വിധേമാകുന്നതിനാൽ എത്തിച്ചേരുന്ന പ്രകാശം പച്ച നിറം കൈവരിക്കുന്നു.[158]

സൂര്യനിൽ നിന്നും വരുന്ന അൾട്രാവയലറ്റ് കിരണങ്ങൾക്ക് അണുനശീകരണ സ്വഭാവമുണ്ട്, ഇതുപയോഗപ്പെടുത്തി ജലവും ഉപകരണങ്ങളും അണുവിമുക്തമാക്കുവാൻ സാധിക്കും. സൺബേണിനും ഈ കിരണങ്ങൾ കാരണമാകുന്നു, ഇവ ത്വക്കിൽ ജീവകം ഡി യുടെ ഉല്പാദനത്തെ സഹായിക്കുകയും ചെയ്യുന്നു. ഇവയെ ഭൗമാന്തരീക്ഷത്തിലെ ഓസോൺ പാളി ആഗിരണം ചെയ്യുന്നു, അതുവഴി ഒരോ അക്ഷാംശമേഖലയിലും ഇവയുടെ അളവ് വ്യത്യാസപ്പെടാറുണ്ട് ഇതിനാൽ ഇവ ഒരോ ഭൂമേഖലയിലും മനുഷ്യന്റെ ത്വക്കിന്റെ നിറം വ്യത്യാസപ്പെട്ടതുപോലെയുള്ള ജൈവീകമാറ്റങ്ങൾക്ക് ഭാഗികമായെങ്കിലും കാരണമായിട്ടുണ്ട്.[159]

ഗ്രഹങ്ങളും ഉപഗ്രഹങ്ങളും[തിരുത്തുക]

ബുധൻ, ശുക്രൻ, ഭൂമി, ചൊവ്വ, വ്യാഴം, ശനി, യുറാനസ്, നെപ്റ്റ്യൂൺ, എന്നിങ്ങനെ എട്ടു ഗ്രഹങ്ങൾ സൂര്യനെ വലം വയ്ക്കുന്നു. ഇവക്കു പുറമെ ആയിരക്കണക്കിനു ഛിന്നഗ്രഹങ്ങളും, ധൂമകേതുക്കളും സൂര്യനെ വലം വയ്ക്കുന്നുണ്ട്‌. പ്ലൂട്ടോ,സീറീസ്, ഈറിസ്, ഹോമിയ, മേക്മേക്ക്, എന്നീ കുള്ളൻ ഗ്രഹങ്ങളും സൂര്യനെ വലം വെയ്ക്കുന്നു.

ഗ്രഹങ്ങളെ പ്രദക്ഷിണം ചെയ്യുന്ന ഏതാണ്ട് അറുപത്തിമൂന്ന് ഉപഗ്രഹങ്ങളെ കണ്ടെത്തിയിട്ടുണ്ട്‌. ബുധനും ശുക്രനും ഉപഗ്രഹങ്ങൾ ഇല്ല. ഭൂമി-1(ചന്ദ്രൻ), ചൊവ്വ-2, വ്യാഴം-63, ശനി-62, യുറാനസ്‌-27, നെപ്റ്റ്യൂൺ-13, എന്നിങ്ങനെ ആണ്‌ ഉപഗ്രഹങ്ങളെ കണ്ടെത്തിയിട്ടുള്ളത്‌. പുതിയ ഉപഗ്രഹങ്ങളെ കണ്ടെത്തിക്കൊണ്ടിരിക്കുന്നു. ശനിയുടെ ഉപഗ്രഹമായ ടൈറ്റൻ മാത്രമാണ്‌ സാന്ദ്രമായ അന്തരീക്ഷമുള്ളതായി കണ്ടെത്തിയിരിക്കുന്ന ഏക ഉപഗ്രഹം[160]. ടൈറ്റന്റെ അന്തരീക്ഷമർദ്ദം ഭൂമിയുടേതിനേക്കാളും കൂടുതലാണ്. ഗാനിമീഡ്, ടൈറ്റൻ എന്നീ ഉപഗ്രഹങ്ങൾ ബുധനേക്കാളും വലുതാണെങ്കിലും പിണ്ഡം ബുധനോളമില്ല.

സൌരോർജ്ജ‍ഫലകങ്ങൾ

വിവിധമതങ്ങളിലെ സൂര്യന്റെ സ്ഥാനം[തിരുത്തുക]

ഹിന്ദുമതത്തിൽ ഋഗ്വേദത്തിൽ പറയുന്നപ്രകാരം ദൃഷ്ടിഗോചരമായ ഒരു ദേവനാണ്‌ സൂര്യൻ. ദ്യോവിന്റെ പുത്രനായ സൂര്യന്റെ വാഹനം അശ്വങ്ങൾ വഹിക്കുന്ന തേരാണ്‌. ഭൂമിക്കു ചുറ്റും നിതാന്തം സഞ്ചരിച്ച് രാത്രിയും പകലും സൃഷ്ടിക്കുന്നു.[അവലംബം ആവശ്യമാണ്]

സൂര്യന്റെ സ്ഥാന ചലനത്തെ ആധാരമാക്കിയാണ് ഇസ്ലാം മതത്തിലെ നമസ്കാര സമയം ക്രമീകരിച്ചിരിക്കുന്നത്. സൂര്യൻ മധ്യാഹ്നത്തിൽനിന്ന് തെറ്റിയതു മുതൽ ഒരു വസ്തുവിന്റെ നിഴൽ ആ വസ്തുവിനോളം തന്നെ ആകുന്നതു വരെ, ഒരു വസ്തുവിന്റെ നിഴൽ ആ വസ്തുവിനോളം തന്നെ ആയതു മുതൽ സൂര്യൻ അസ്തമിക്കുന്നതു വരെ, സൂര്യൻ അസ്തമിച്ചതു മുതൽ പടിഞ്ഞാറ് ചുവപ്പ് മേഘം മായുന്നതു വരെ, ചുവപ്പ് മേഘം മാഞ്ഞതു മുതൽ കിഴക്ക് വെള്ള കീറുന്നതു വരെ, കിഴക്ക് വെള്ള കീറിയതു മുതൽ സൂര്യൻ ഉദിക്കുന്നതു വരെ എന്നിങ്ങനെ അഞ്ചായി തിരിച്ചാണ് നമസ്കാര സമയങ്ങൾ നിർണയിച്ചിരിക്കുന്നത്.

സോഹോ[തിരുത്തുക]

സൂര്യനെ കുറിച്ച് കൂടുതൽ പഠിക്കാൻ നാസ 1995 ഡിസംബർ 2നു വിക്ഷേപിച്ച ഗവേഷണവാഹനമാണ് സോഹോ(SOLAR AND HELIOSPHERIC OBSERVATORY).

ഇതും കൂടി കാണുക[തിരുത്തുക]

കുറിപ്പുകൾ[തിരുത്തുക]

  1. ഒരു സാധാരണ മെഴുകുതിരി പുറത്തുവിടുന്ന ഊർജ്ജം പത്തു മുതൽ നൂറ് വാട്ട് വരെയാണ്‌[41]

അവലംബം[തിരുത്തുക]

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Williams, D.R. (2004). "Sun Fact Sheet". NASA. ശേഖരിച്ചത്: 2009-06-23. 
  2. Research Consortium on Nearby Stars, GSU (2007-September 17). "The One Hundred Nearest Star Systems". RECONS. ശേഖരിച്ചത്: 2007-11-06. 
  3. Montalban, J.; Miglio, A.; Noels, A.; Grevesse, N.; Di Mauro, M.P. (2004). "Solar model with CNO revised abundances". arΧiv: astro-ph/0408055 [astro-ph].
  4. "Eclipse 99: Frequently Asked Questions". NASA. 
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 "Solar System Exploration: Planets: Sun: Facts & Figures". NASA. യഥാർത്ഥ സൈറ്റിൽ നിന്ന് 2008-01-02-നു ആർക്കൈവ് ചെയ്തത്. 
  6. Elert, G. (എഡി.). "The Physics Factbook". 
  7. "Principles of Spectroscopy". University of Michigan: Astronomy Departement. 2007. 
  8. 8.0 8.1 Seidelmann, P. K.; Abalakin, V.K.; Bursa, M.; Davies, M.E.; de Bergh, C.; Lieske, J.H.; Oberst, J.; Simon, J.L.; Standish, E.M.; Stooke, P.; Thomas, P.C. (2000). "Report Of The IAU/IAG Working Group On Cartographic Coordinates And Rotational Elements Of The Planets And Satellites: 2000". ശേഖരിച്ചത്: 2006-03-22. 
  9. "The Sun's Vital Statistics". Stanford Solar Center. ശേഖരിച്ചത്: 2008-07-29. , citing Eddy, J. (1979). A New Sun: The Solar Results From Skylab. NASA. p. 37. NASA SP-402. 
  10. Woolfson, M. (2000). "The origin and evolution of the solar system". Astronomy & Geophysics 41: 1.12. ഡി.ഒ.ഐ.:10.1046/j.1468-4004.2000.00012.x. 
  11. 11.0 11.1 Basu, S.; Antia, H.M. (2008). "Helioseismology and Solar Abundances". Physics Reports 457 (5–6): 217. ഡി.ഒ.ഐ.:10.1016/j.physrep.2007.12.002. arΧiv:0711.4590. 
  12. Wilk, Stephen R. (March 2009). "The Yellow Sun Paradox". Optics & Photonics News: 12–13. 
  13. "Sun". World Book at NASA. NASA. ശേഖരിച്ചത്: 2009-10-31. 
  14. Than, K. (2006). "Astronomers Had it Wrong: Most Stars are Single". Space.com. ശേഖരിച്ചത്: 2007-08-01. 
  15. Lada, C.J. (2006). "Stellar multiplicity and the initial mass function: Most stars are single". Astrophysical Journal 640 (1): L63–L66. ഡി.ഒ.ഐ.:10.1086/503158. ബിബ്‌കോഡ്:2006ApJ...640L..63L. 
  16. "Stellar parameters". Space Science Reviews 43 (3–4): 244–250. 1986. ഡി.ഒ.ഐ.:10.1007/BF00190626. 
  17. Bessell, M. S.; Castelli, F.; Plez, B. (1998). "Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars". Astronomy and Astrophysics 333: 231–250. 
  18. A Star with two North Poles, April 22, 2003, Science @ NASA
  19. Riley, Pete; Linker, J. A.; Mikić, Z., "Modeling the heliospheric current sheet: Solar cycle variations", (2002) Journal of Geophysical Research (Space Physics), Volume 107, Issue A7, pp. SSH 8-1, CiteID 1136, DOI 10.1029/2001JA000299. (Full text)
  20. Adams, F.; Laughlin, G.; Graves, G.J. M. (2004). "Red Dwarfs and the End of the Main Sequence". RevMexAA 22: 46–49. 
  21. "Equinoxes, Solstices, Perihelion, and Aphelion, 2000-2020". U.S. Naval Observatory (USNO). 2008-01-31. ശേഖരിച്ചത്: 2009-07-17. 
  22. Simon, A. (2001). The real science behind the X-files : microbes, meteorites, and mutants. Simon & Schuster. pp. 25–27. ഐ.എസ്.ബി.എൻ. 0684856182. 
  23. Godier, S.; Rozelot, J.-P. (2000). "The solar oblateness and its relationship with the structure of the tachocline and of the Sun's subsurface" (PDF). Astronomy and Astrophysics 355: 365–374. ബിബ്‌കോഡ്:2000A&A...355..365G. 
  24. Phillips, 1995, pp. 78–79
  25. Schutz, Bernard F. (2003). Gravity from the ground up. Cambridge University Press. pp. 98–99. ഐ.എസ്.ബി.എൻ. 9780521455060. 
  26. 26.0 26.1 26.2 Zeilik, M.A.; Gregory, S.A. (1998). Introductory Astronomy & Astrophysics (4th എഡി.). Saunders College Publishing. p. 322. ഐ.എസ്.ബി.എൻ. 0030062284. 
  27. Falk, S.W.; Lattmer, J.M.; Margolis, S.H. (1977). "Are supernovae sources of presolar grains?". Nature 270: 700–701. ഡി.ഒ.ഐ.:10.1038/270700a0. 
  28. Zirker, 2002, p. 11
  29. Phillips, 1995, p. 73
  30. Phillips, 1995, pp. 58–67
  31. 31.0 31.1 García, R.; et al. (2007). "Tracking solar gravity modes: the dynamics of the solar core". Science 316 (5831): 1591–1593. PMID 17478682. ഡി.ഒ.ഐ.:10.1126/science.1140598. 
  32. Basu et al. (2009). "Fresh insights on the structure of the solar core". The Astrophysical Journal 699 (699): 1403. ഡി.ഒ.ഐ.:10.1088/0004-637X/699/2/1403. ശേഖരിച്ചത്: 2009-07-10.  More than one of |work= ഒപ്പം |journal= specified (സഹായം)
  33. 33.0 33.1 33.2 33.3 33.4 "NASA/Marshall Solar Physics". Solarscience.msfc.nasa.gov. 2007-01-18. ശേഖരിച്ചത്: 2009-07-11. 
  34. Broggini, Carlo (26-28 June 2003). Nuclear Processes at Solar Energy (PDF). ശേഖരിച്ചത്: 2009-09-24. 
  35. Zirker, 2002, pp. 15–34
  36. 36.0 36.1 36.2 Phillips, 1995, pp. 47–53
  37. p. 102, The physical universe: an introduction to astronomy, Frank H. Shu, University Science Books, 1982, ISBN 0-935702-05-9.
  38. Pickering, Kevin T.; Owen, Lewis A. (1997). An introduction to global environmental issues. Routledge. p. 60. ഐ.എസ്.ബി.എൻ. 9780415140980. 
  39. 39.0 39.1 39.2 39.3 39.4 39.5 39.6 "Nasa – Sun". Nasa.gov. 2007-11-29. ശേഖരിച്ചത്: 2009-07-11. 
  40. Hitchcock, R. Timothy; Patterson, Patterson (1995). Radio-Frequency and ELF Electromagnetic Energies: A Handbook for Health Professionals. John Wiley and Sons. p. 218. ഐ.എസ്.ബി.എൻ. 9780471284543. 
  41. Hamins, Anthony; Bundy, Mathew (2005). "Characterization of Candle Flames" (pdf). Journal of Fire Protection Engeneering 15: 265–285. ഡി.ഒ.ഐ.:10.1177/1042391505053163. 
  42. Haubold, H.J.; Mathai, A.M. (May 18, 1994). Solar Nuclear Energy Generation & The Chlorine Solar Neutrino Experiment (PDF). ശേഖരിച്ചത്: 2009-09-24. 
  43. Myers, Steven T. (1999-02-18). "Lecture 11 – Stellar Structure I: Hydrostatic Equilibrium". ശേഖരിച്ചത്: 15 July 2009. 
  44. NASA (2007). "Ancient Sunlight". Technology Through Time (50). ശേഖരിച്ചത്: 2009-06-24. 
  45. 45.0 45.1 Schlattl, H. (2001). "Three-flavor oscillation solutions for the solar neutrino problem". Physical Review D 64 (1): 013009. ഡി.ഒ.ഐ.:10.1103/PhysRevD.64.013009. 
  46. ed. by Andrew M. Soward ... (2005). "The solar tachocline: Formation, stability and its role in the solar dynamo". Fluid dynamics and dynamos in astrophysics and geophysics reviews emerging from the Durham Symposium on Astrophysical Fluid Mechanics, July 29 to August 8, 2002. Boca Raton: CRC Press. pp. 193–235. ഐ.എസ്.ബി.എൻ. 9780849333552. 
  47. Mullan, D.J (2000). "Solar Physics: From the Deep Interior to the Hot Corona". എന്നതിൽ Page, D., Hirsch, J.G. From the Sun to the Great Attractor. Springer. p. 22. ഐ.എസ്.ബി.എൻ. 9783540410645. 
  48. 48.0 48.1 48.2 48.3 48.4 48.5 48.6 48.7 48.8 Abhyankar, K.D. (1977). "A Survey of the Solar Atmospheric Models". Bull. Astr. Soc. India 5: 40–44. 
  49. Gibson, E.G. (1973). The Quiet Sun. NASA. ASIN B0006C7RS0. 
  50. Shu, F.H. (1991). The Physics of Astrophysics 1. University Science Books. ഐ.എസ്.ബി.എൻ. 0935702644. 
  51. Parnel, C. "Discovery of Helium". University of St Andrews. ശേഖരിച്ചത്: 2006-03-22. 
  52. De Pontieu, B.; et al. (2007). "Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind". Science 318 (5856): 1574–77. PMID 18063784. ഡി.ഒ.ഐ.:10.1126/science.1151747. 
  53. Solanki, S.K.; , W. and Ayres, T. (1994). "New Light on the Heart of Darkness of the Solar Chromosphere". Science 263: 64–66. ഡി.ഒ.ഐ.:10.1126/science.263.5143.64. 
  54. 54.0 54.1 54.2 Hansteen, V.H.; Leer, E. (1997). "The role of helium in the outer solar atmosphere". The Astrophysical Journal 482: 498–509. ഡി.ഒ.ഐ.:10.1086/304111. 
  55. 55.0 55.1 55.2 55.3 55.4 55.5 55.6 Erdèlyi, R.; Ballai, I. (2007). "Heating of the solar and stellar coronae: a review". Astron. Nachr. 328: 726–733. ഡി.ഒ.ഐ.:10.1002/asna.200710803. 
  56. 56.0 56.1 56.2 56.3 56.4 Dwivedi, Bhola N. (2006). "Our ultraviolet Sun" (pdf). Current Science 91 (5): 587–595. ഐ.എസ്.എസ്.എൻ. 0011-3891. 
  57. 57.0 57.1 57.2 57.3 57.4 57.5 57.6 Russell, C.T. (2001). "Solar wind and interplanetary magnetic filed: A tutorial" (pdf). എന്നതിൽ Song, Paul; Singer, Howard J. and Siscoe, George L. Space Weather (Geophysical Monograph). American Geophysical Union. pp. 73–88. ഐ.എസ്.ബി.എൻ. 978-0875909844. 
  58. A.G, Emslie; J.A., Miller (2003). "Particle Acceleration". എന്നതിൽ Dwivedi, B.N. Dynamic Sun. Cambridge University Press. p. 275. ഐ.എസ്.ബി.എൻ. 9780521810579. 
  59. European Space Agency. The Distortion of the Heliosphere: Our Interstellar Magnetic Compass. Press release. ശേഖരിച്ച തീയതി: 2006-03-22.
  60. Zirker, 2002, pp. 119–120
  61. Zirker, Jack B. (2002). Journey from the Center of the Sun. Princeton University Press. pp. 120–127. ഐ.എസ്.ബി.എൻ. 9780691057811. 
  62. Phillips, Kenneth J. H. (1995). Guide to the Sun. Cambridge University Press. pp. 14–15, 34–38. ഐ.എസ്.ബി.എൻ. 9780521397889. 
  63. "CNN.com - Sci-Tech - Space - Sun flips magnetic field - February 16, 2001". Archives.cnn.com. ശേഖരിച്ചത്: 2009-07-11. 
  64. "The Sun Does a Flip". Science.nasa.gov. 2001-02-15. ശേഖരിച്ചത്: 2009-07-11. 
  65. Wang, Y.-M.; Sheeley, N.R. (2003). "Modeling the Sun's Large-Scale Magnetic Field during the Maunder Minimum". The Astrophysical Journal 591: 1248–56. ഡി.ഒ.ഐ.:10.1086/375449. 
  66. 66.0 66.1
  67. Hansen, C.J.; Kawaler, S.A.; Trimble, V. (2004). Stellar Interiors: Physical Principles, Structure, and Evolution (2nd എഡി.). Springer. p. 19–20. ഐ.എസ്.ബി.എൻ. 0387200894. 
  68. Hansen, Kawaler & Trimble (2004, pp. 77–78)
  69. Aller, L.H. (1968). "The chemical composition of the Sun and the solar system" (PDF). Proceedings of the Astronomical Society of Australia 1: 133. ബിബ്‌കോഡ്:1968PASAu...1..133A. 
  70. Hansen, Kawaler & Trimble (2004, § 9.2.3)
  71. 71.0 71.1 71.2 Biemont, E. (1978). "Abundances of singly ionized elements of the iron group in the Sun". Monthly Notices of the Royal Astronomical Society 184: 683–694. ബിബ്‌കോഡ്:1978MNRAS.184..683B. 
  72. Ross and Aller 1976, Withbroe 1976, Hauge and Engvold 1977, cited in Biemont 1978.
  73. Corliss and Bozman (1962 cited in Biemont 1978) and Warner (1967 cited in Biemont 1978)
  74. Smith (1976 cited in Biemont 1978)
  75. "The Largest Sunspot in Ten Years". Goddard Space Flight Center (GSFC). 2001-03-30. ശേഖരിച്ചത്: 2009-07-10. 
  76. "NASA Satellites Capture Start of New Solar Cycle". PhysOrg (Science/Physics News). 2008-01-04. ശേഖരിച്ചത്: 2009-07-10. 
  77. Lean, J.; Skumanich, A.; White, O. (1992). "Estimating the Sun's radiative output during the Maunder Minimum". Geophysical Research Letters 19 (15): 1591–1594. ഡി.ഒ.ഐ.:10.1029/92GL01578. 
  78. Mackay, R.M.; Khalil, M.A.K (2000). "Greenhouse gases and global warming". എന്നതിൽ S.N. Singh. Trace Gas Emissions and Plants. Springer. pp. 1–28. ഐ.എസ്.ബി.എൻ. 9780792365457. ശേഖരിച്ചത്: 2009-07-19. 
  79. Ehrlich, R. (2007). "Solar Resonant Diffusion Waves as a Driver of Terrestrial Climate Change". Journal of Atmospheric and Solar-Terrestrial Physics 69 (7): 759. ഡി.ഒ.ഐ.:10.1016/j.jastp.2007.01.005. arΧiv:astro-ph/0701117. 
  80. Clark, S. (2007). "Sun's fickle heart may leave us cold". New Scientist 193 (2588): 12. ഡി.ഒ.ഐ.:10.1016/S0262-4079(07)60196-1. 
  81. Zirker, 2002, pp. 7–8
  82. Bonanno, A.; Schlattl, H.; Paternò, L. (2008). "The age of the Sun and the relativistic corrections in the EOS". Astronomy and Astrophysics 390: 1115–1118. ഡി.ഒ.ഐ.:10.1051/0004-6361:20020749. arΧiv:astro-ph/0204331. 
  83. Amelin, Y.; Krot, A.; Hutcheon, I.; Ulyanov, A. (2002). "Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions.". Science 297 (5587): 1678–1683. PMID 12215641. ഡി.ഒ.ഐ.:10.1126/science.1073950. 
  84. Baker, J.; Bizzarro, M.; Wittig, N.; Connelly, J.; Haack, H. (2005). "Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites". Nature 436: 1127–1131. ഡി.ഒ.ഐ.:10.1038/nature03882. 
  85. Goldsmith, D.; Owen, T. (2001). The search for life in the universe. University Science Books. p. 96. ഐ.എസ്.ബി.എൻ. 9781891389160. 
  86. 86.0 86.1 86.2 Schröder, K.-P.; Smith, R.C. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386 (1): 155. ഡി.ഒ.ഐ.:10.1111/j.1365-2966.2008.13022.x. arΧiv:0801.4031.  See also Palmer, J. (2008). "Hope dims that Earth will survive Sun's death". New Scientist. ശേഖരിച്ചത്: 2008-03-24. 
  87. Carrington, D. (2000). "Date set for desert Earth". BBC News. ശേഖരിച്ചത്: 2007-03-31. 
  88. Pogge, R.W. (1997). "The Once and Future Sun". New Vistas in Astronomy. Ohio State University (Department of Astronomy). ശേഖരിച്ചത്: 2005-12-07. 
  89. Sackmann, I.-J.; Boothroyd, A.I.; Kraemer, K.E. (1993). "Our Sun. III. Present and Future". Astrophysical Journal 418: 457. ഡി.ഒ.ഐ.:10.1086/173407. 
  90. "Star" (ഭാഷ: ഇംഗ്ലീഷ്). നാസ. ശേഖരിച്ചത്: 2009-12-14.  |coauthors= requires |author= (സഹായം)
  91. Jean Tate. "Black Dwarf". ശേഖരിച്ചത്: 2009-12-14. 
  92. "Construction of a Composite Total Solar Irradiance (TSI) Time Series from 1978 to present". ശേഖരിച്ചത്: 2005-10-05. 
  93. El-Sharkawi, Mohamed A. (2005). Electric energy. CRC Press. pp. 87–88. ഐ.എസ്.ബി.എൻ. 9780849330780. 
  94. Phillips, 1995, pp. 319–321
  95. Sun's retrograde motion and violation of even-odd cycle rule in sunspot activity, J. Javaraiah, 2005
  96. Reid, M.J. (1993). "The distance to the center of the Galaxy". Annual Review of Astronomy and Astrophysics 31: 345–372. ഡി.ഒ.ഐ.:10.1146/annurev.aa.31.090193.002021. ബിബ്‌കോഡ്:1993ARA&A..31..345R. 
  97. Eisenhauer, F.; et al. (2003). "A Geometric Determination of the Distance to the Galactic Center". Astrophysical Journal 597 (2): L121–L124. ഡി.ഒ.ഐ.:10.1086/380188. ബിബ്‌കോഡ്:2003ApJ...597L.121E. 
  98. Horrobin, M.; et al. (2004). "First results from SPIFFI. I: The Galactic Center" (PDF). Astronomische Nachrichten 325 (2): 120–123. ഡി.ഒ.ഐ.:10.1002/asna.200310181. 
  99. Eisenhauer, F.; et al. (2005). "SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month". Astrophysical Journal 628 (1): 246–259. ഡി.ഒ.ഐ.:10.1086/430667. ബിബ്‌കോഡ്:2005ApJ...628..246E. 
  100. Gehrels, Neil; Chen, Wan (February 25, 1993). "The Geminga supernova as a possible cause of the local interstellar bubble". Nature 361: 706–707. ഡി.ഒ.ഐ.:10.1038/361704a0. ശേഖരിച്ചത്: 2009-09-24. 
  101. Hubble News Desk. Exposing the Stuff Between the Stars. Press release. ശേഖരിച്ച തീയതി: 2007-05-10.
  102. Beletsky, Y. (2007). "The Milky Way Near the Southern Cross". Astronomy Picture of the Day. NASA. ശേഖരിച്ചത്: 2009-05-26. 
  103. Gillman, M.; Erenler, H. (2008). "The galactic cycle of extinction". International Journal of Astrobiology 386: 155. ഡി.ഒ.ഐ.:10.1017/S1473550408004047. 
  104. Leong, S. (2002). "Period of the Sun's Orbit around the Galaxy (Cosmic Year)". The Physics Factbook. ശേഖരിച്ചത്: 2007-05-10. 
  105. Croswell, K. (2008). "Milky Way keeps tight grip on its neighbor". New Scientist (2669): 8. 
  106. Garlick, M.A. (2002). The Story of the Solar System. Cambridge University Press. p. 46. ഐ.എസ്.ബി.എൻ. 0521803365. 
  107. Haxton, W.C. (1995). "The Solar Neutrino Problem" (PDF). Annual Review of Astronomy and Astrophysics 33: 459–504. ഡി.ഒ.ഐ.:10.1146/annurev.aa.33.090195.002331. ബിബ്‌കോഡ്:1995ARA&A..33..459H. 
  108. 108.0 108.1 108.2 MacDonald, A.B. (2004). "Solar neutrinos". New Journal of Physics 6 (1): 121. ഡി.ഒ.ഐ.:10.1088/1367-2630/6/1/121. 
  109. Ahmad, QR; et al. (2001-07-25). "Measurement of the Rate of νe + d --> p + p + e- Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory". Physical Review Letters (American Physical Society) 87 (7): 071301. ഡി.ഒ.ഐ.:10.1103/PhysRevLett.87.071301. PACS 26.65.+t, 14.60.Pq, 95.85.Ry. ശേഖരിച്ചത്: 2008-06-04. 
  110. "Sudbury Neutrino Observatory First Scientific Results". 2001-07-03. ശേഖരിച്ചത്: 2008-06-04. 
  111. Alfvén, H. (1947). "Magneto-hydrodynamic waves, and the heating of the solar corona" (PDF). Monthly Notices of the Royal Astronomical Society 107 (2): 211. ബിബ്‌കോഡ്:1947MNRAS.107..211A. 
  112. Parker, E.N. (1988). "Nanoflares and the solar X-ray corona" (PDF). Astrophysical Journal 330 (1): 474. ഡി.ഒ.ഐ.:10.1086/166485. ബിബ്‌കോഡ്:1988ApJ...330..474P. 
  113. Sturrock, P.A.; Uchida, Y. (1981). "Coronal heating by stochastic magnetic pumping" (PDF). Astrophysical Journal 246 (1): 331. ഡി.ഒ.ഐ.:10.1086/158926. ബിബ്‌കോഡ്:1981ApJ...246..331S. 
  114. Kasting, J.F.; Ackerman, T.P. (1986). "Climatic Consequences of Very High Carbon Dioxide Levels in the Earth’s Early Atmosphere". Science 234 (4782): 1383–1385. PMID 11539665. ഡി.ഒ.ഐ.:10.1126/science.11539665. 
  115. Robert Zimmerman, "What's Wrong with Our Sun?", Sky and Telescope August 2009
  116. http://science.nasa.gov/headlines/y2009/01apr_deepsolarminimum.htm
  117. "planet, n.". Oxford English Dictionary. December 2007. ശേഖരിച്ചത്: 2008-02-07.  Note: select the Etymology tab
  118. Goldstein, Bernard R. (1997). "Saving the phenomena : the background to Ptolemy's planetary theory". Journal for the History of Astronomy (Cambridge (UK)) 28 (1): 1–12. ശേഖരിച്ചത്: 2008-02-06. 
  119. Ptolemy; Toomer, G. J. (1998). Ptolemy's Almagest. Princeton University Press. ഐ.എസ്.ബി.എൻ. 9780691002606. 
  120. Sider, D. (1973). "Anaxagoras on the Size of the Sun". Classical Philology 68 (2): 128–129. ഡി.ഒ.ഐ.:10.1086/365951. 
  121. A short History of scientific ideas to 1900, C. Singer, Oxford University Press, 1959, p. 151.
  122. The Arabian Science, C. Ronan, pp. 201–244 in The Cambridge Illustrated History of the World's Science, Cambridge University Press, 1983; at pp. 213–214.
  123. "Galileo Galilei (1564–1642)". BBC. ശേഖരിച്ചത്: 2006-03-22. 
  124. Prof. Hamed A. Ead, Averroes As A Physician, University of Cairo.
  125. "Sir Isaac Newton (1643–1727)". BBC. ശേഖരിച്ചത്: 2006-03-22. 
  126. "Herschel Discovers Infrared Light". Cool Cosmos. ശേഖരിച്ചത്: 2006-03-22. 
  127. 127.0 127.1 Thomson, W. (1862). "On the Age of the Sun's Heat". Macmillan's Magazine 5: 388–393. 
  128. Lockyer, J.N. (1890). The meteoritic hypothesis; a statement of the results of a spectroscopic inquiry into the origin of cosmical systems. Macmillan and Co. ബിബ്‌കോഡ്:1890QB981.L78..... 
  129. Darden, L. (1998). "The Nature of Scientific Inquiry". 
  130. Hawking, S. W. (2001). The Universe in a Nutshell. Bantam Books. ഐ.എസ്.ബി.എൻ. 0-55-380202-X. 
  131. "Studying the stars, testing relativity: Sir Arthur Eddington". Space Science. European Space Agency. 2005. ശേഖരിച്ചത്: 2007-08-01. 
  132. Bethe, H. (1938). "On the Formation of Deuterons by Proton Combination". Physical Review 54 (10): 862–862. ഡി.ഒ.ഐ.:10.1103/PhysRev.54.862.2. 
  133. Bethe, H. (1939). "Energy Production in Stars". Physical Review 55 (1): 434–456. ഡി.ഒ.ഐ.:10.1103/PhysRev.55.434. 
  134. Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. (1957). "Synthesis of the Elements in Stars". Reviews of Modern Physics 29 (4): 547–650. ഡി.ഒ.ഐ.:10.1103/RevModPhys.29.547. ബിബ്‌കോഡ്:1957RvMP...29..547B. 
  135. Phillips, T. (2007). "Stereo Eclipse". Science@NASA. NASA. ശേഖരിച്ചത്: 2008-06-19. 
  136. Wade, M. (2008). "Pioneer 6-7-8-9-E". Encyclopedia Astronautica. ശേഖരിച്ചത്: 2006-03-22. 
  137. 137.0 137.1 Burlaga, L.F. (2001). "Magnetic Fields and plasmas in the inner heliosphere: Helios results". Planetary and Space Science 49: 1619–27. ഡി.ഒ.ഐ.:10.1016/S0032-0633(01)00098-8. 
  138. Burkepile, C. (1998). "Solar Maximum Mission Overview". ശേഖരിച്ചത്: 2006-03-22. 
  139. Japan Aerospace Exploration Agency. Result of Re-entry of the Solar X-ray Observatory "Yohkoh" (SOLAR-A) to the Earth's Atmosphere. Press release. ശേഖരിച്ച തീയതി: 2006-03-22.
  140. "Spaceflight Now - WorldWide Launch Schedule". ശേഖരിച്ചത്: 2009-11-28. 
  141. "Sungrazing Comets". LASCO (US Naval Research Laboratory). ശേഖരിച്ചത്: 2009-03-19. 
  142. JPL/CALTECH (2005). "Ulysses: Primary Mission Results". NASA. ശേഖരിച്ചത്: 2006-03-22. 
  143. Calaway, M.J. (2009). "Genesis capturing the Sun: Solar wind irradiation at Lagrange 1". Nuclear Instruments and Methods in Physics Research B 267 (7): 1101. ഡി.ഒ.ഐ.:10.1016/j.nimb.2009.01.132. 
  144. "STEREO Spacecraft & Instruments". NASA Missions. March 8, 2006. ശേഖരിച്ചത്: May 30, 2006. 
  145. Howard R. A., Moses J. D., Socker D. G., Dere K. P., Cook J. W. (2002). "Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)". Solar Variabilit and Solar Physics Missions Advances in Space Research 29 (12): 2017–2026. 
  146. White, T.J.; Mainster, M.A.; Wilson, P.W.; Tips, J.H. (1971). "Chorioretinal temperature increases from solar observation". Bulletin of Mathematical Biophysics 33 (1): 1. ഡി.ഒ.ഐ.:10.1007/BF02476660. 
  147. Tso, M.O.M.; La Piana, F.G. (1975). "The Human Fovea After Sungazing". Transactions of the American Academy of Ophthalmology and Otolaryngology 79: OP788. PMID 1209815. 
  148. Hope-Ross, M.W. (1993). "Ultrastructural findings in solar retinopathy". Eye 7: 29. PMID 8325420. 
  149. Schatz, H.; Mendelblatt, F. (1973). "Solar Retinopathy from Sun-Gazing Under Influence of LSD". British Journal of Ophthalmology 57 (4): 270. PMID 8325420. ഡി.ഒ.ഐ.:10.1136/bjo.57.4.270. 
  150. Chou, B.R. (2005). "Eye Safety During Solar Eclipses".  "While environmental exposure to UV radiation is known to contribute to the accelerated aging of the outer layers of the eye and the development of cataracts, the concern over improper viewing of the Sun during an eclipse is for the development of "eclipse blindness" or retinal burns."
  151. Ham, W.T. Jr.; Mueller, H.A.; Sliney, D.H. (1976). "Retinal sensitivity to damage from short wavelength light". Nature 260: 153. ഡി.ഒ.ഐ.:10.1038/260153a0. 
  152. Ham, W.T. Jr.; Mueller, H.A.; Ruffolo, J.J. Jr.; Guerry, D. III, (1980). "Solar Retinopathy as a function of Wavelength: its Significance for Protective Eyewear". എന്നതിൽ Williams, T.P.; Baker, B.N. The Effects of Constant Light on Visual Processes. Plenum Press. pp. 319–346. ഐ.എസ്.ബി.എൻ. 0306403285. 
  153. Kardos, T. (2003). Earth science. J.W. Walch. p. 87. ഐ.എസ്.ബി.എൻ. 9780825145001. 
  154. Marsh, J.C.D. (1982). "Observing the Sun in Safety" (PDF). Journal of the British Astronomical Association 92 (6): 257. ബിബ്‌കോഡ്:1982JBAA...92..257M. 
  155. Espenak, F. (2005). "Eye Safety During Solar Eclipses". NASA. ശേഖരിച്ചത്: 2006-03-22. 
  156. Haber, Jorg; Magnor, Marcus; Seidel, Hans-Peter (2005). "Physically based Simulation of Twilight Phenomena" (pdf). ACM Transactions on Graphics (TOG) 24 (4): 1353–1373. ഡി.ഒ.ഐ.:10.1145/1095878.1095884. 
  157. I.G. Piggin (1972). "Diurnal asymmetries in global radiation". Theoretical and Applied Climatology 20 (1): 41–48. ഡി.ഒ.ഐ.:10.1007/BF02243313. ശേഖരിച്ചത്: 2009-07-19. 
  158. "The Green Flash". BBC. ശേഖരിച്ചത്: 2008-08-10. 
  159. Barsh, G.S. (2003). "What Controls Variation in Human Skin Color?". PLoS Biology 1: e7. ഡി.ഒ.ഐ.:10.1371/journal.pbio.0000027. 
  160. http://saturn.jpl.nasa.gov/news/features/index.cfm

പുറത്തേക്കുള്ള കണ്ണികൾ[തിരുത്തുക]

സൂര്യൻ പറ്റിയുള്ള കൂടുതൽ വിവരങ്ങൾക്ക്, ഇതര വിക്കിമീഡിയ സംരംഭങ്ങളിൽ തിരയുക-
Wiktionary-logo-en.png ഡിക്ഷണറി അർത്ഥങ്ങൾ വിക്കിനിഘണ്ടുവിൽനിന്ന്
Wikibooks-logo.svg പാഠപുസ്തകങ്ങൾ പാഠശാലയിൽ നിന്ന്
Wikiquote-logo.svg Quotations വിക്കി ചൊല്ലുകളിൽ നിന്ന്
Wikisource-logo.svg Source texts വിക്കിഗ്രന്ഥശാലയിൽ നിന്ന്
Commons-logo.svg ചിത്രങ്ങളും മീഡിയയും കോമൺസിൽ നിന്ന്
Wikinews-logo.svg വാർത്തകൾ വിക്കി വാർത്തകളിൽ നിന്ന്
Wikiversity-logo-en.svg പഠന സാമഗ്രികൾ വിക്കിവേർസിറ്റി യിൽ നിന്ന്


സൗരയൂഥം
സൂര്യൻ ബുധൻ ശുക്രൻ ചന്ദ്രൻ ഭൂമി ഫോബോസും ഡെയ്മോസും ചൊവ്വ സെറെസ് ഛിന്നഗ്രഹവലയം വ്യാഴം വ്യാഴത്തിന്റെ ഉപഗ്രഹങ്ങൾ ശനി ശനിയുടെ ഉപഗ്രഹങ്ങൾ യുറാനസ് യുറാനസിന്റെ ഉപഗ്രഹങ്ങൾ നെപ്റ്റ്യൂൺറ്റെ ഉപഗ്രഹങ്ങൾ നെപ്റ്റ്യൂൺ കാരോൺ പ്ലൂട്ടോ കുയ്പർ വലയം ഡിസ്നോമിയ ഈറിസ് The scattered disc ഊർട്ട് മേഘംSolar System XXVII.png
നക്ഷത്രം: സൂര്യൻ
ഗ്രഹങ്ങൾ: ബുധൻ - ശുക്രൻ - ഭൂമി - ചൊവ്വ - വ്യാഴം - ശനി - യുറാനസ് - നെപ്റ്റ്യൂൺ
കുള്ളൻ ഗ്രഹങ്ങൾ: സീറീസ് - പ്ലൂട്ടോ - ഈറിസ്
മറ്റുള്ളവ: ചന്ദ്രൻ - ഛിന്നഗ്രഹങ്ങൾ - ധൂമകേതുക്കൾ - ഉൽക്കകൾ - കൈപ്പർ വലയം

"http://ml.wikipedia.org/w/index.php?title=സൂര്യൻ&oldid=1929142" എന്ന താളിൽനിന്നു ശേഖരിച്ചത്