ഗ്രാഫീൻ

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
ഗ്രാഫീന്റെ സൂക്ഷമരൂപം: കോഴിക്കൂടിന്റെ വലയ്ക്കു സമാനമായ ക്രിസ്റ്റലിക ഘടന.


ഒരു അണുവിന്റെ മാത്രം കട്ടിയുള്ള, തേനീച്ചക്കൂടുപോലെ ഇടതൂർന്ന ക്രിസ്റ്റലികഘടനയുള്ള ദ്വിമാന കാർബൺ ആറ്റങ്ങളുടെ ഒരു പരന്ന പാളിയാണ് ഗ്രാഫീൻ. ഗ്രാഫൈറ്റ് എന്ന പേരിനൊപ്പം ഇരട്ടബന്ധനമുള്ള കാർബൺ സംയുക്തങ്ങളെ സൂചിപ്പിക്കുന്ന -ഈൻ എന്ന ധാതു കൂട്ടിച്ചേർത്താണ് ഗ്രാഫീൻ എന്ന പേരു സൃഷ്ടിച്ചിരിക്കുന്നത്. സാധാരണ നിലയ്ക്ക് ഗ്രാഫീൻ ഷീറ്റിന്റെ ഘടന മനസ്സിലാക്കാൻ കോഴിക്കൂടു കെട്ടാനുപയോഗിക്കുന്ന ഷഡ്കോണ കണ്ണികളുള്ള ഒരു വലയെ സങ്കല്പിച്ചാൽ മതിയാകും. പല ഗ്രാഫീൻ പാളികൾ ഒന്നിനുമേൽ ഒന്നായി അടുക്കിയതാണ് സാധാരണ ഗ്രാഫൈറ്റിന്റെ ക്രിസ്റ്റലിക ഘടന. ഷഡ്‌കോണാകൃതിയിൽ 6 കാർബൺ ആറ്റമുകൾ തമ്മിൽ ബന്ധനത്തിലിരിക്കുന്ന ഒരു ഘടനയുടെ അനന്തമായ ആവർത്തനമാണ് ഗ്രാഫീൻ പാളിയിൽ കാണാനാവുക[1]. ഒറ്റ ആറ്റത്തിന്റെ മാത്രം ‘കനം’ ഉള്ളതുകൊണ്ടും കാർബൺ അണുക്കൾ തമ്മിലുള്ള ബന്ധന അകലം 0.142 നാനോമീറ്റർ മാത്രം ആയതുകൊണ്ടും ഏതാണ്ട് 70ലക്ഷം ഗ്രാഫീൻ ഷീറ്റുകൾ ഒന്നിനുമീതേ അടുക്കിയാലും അതിനു ഒരു മില്ലീമീറ്റർ കനമേ കാണൂ.

കാർബണിന്റെ അപരരൂപങ്ങളായ കൽക്കരി, ഗ്രാഫൈറ്റ്, കാർബൺ നാനോറ്റ്യൂബുകൾ, ഫുള്ളറീൻ തന്മാത്രകൾ എന്നിവയുടെ ഏറ്റവും മൌലികമായ ഘടനാ ഏകകമാണ് ഗ്രാഫീൻ. ആന്ദ്രെ ഗെയിം, കോൺസ്റ്റന്റൈൻ നോവോസെലോവ് എന്നിവർക്ക് 2010ലെ ഭൌതികശാസ്ത്ര നോബൽ സമ്മാനം നേടിക്കൊടുത്തത് ഗ്രാഫീനുകളെ സ്ഥായിത നഷ്ടപ്പെടാതെ വേർതിരിച്ചെടുത്തതിനും അതിന്റെ ഘടനയെയും സ്വഭാവവിശേഷങ്ങളെയും പറ്റി സമഗ്രമായി വിശദീകരിക്കുകയും ചെയ്ത ഗവേഷണങ്ങൾക്കാണ്[2].

ശാസ്ത്ര വിശദീകരണം[തിരുത്തുക]

ഗ്രാഫീനുമായി ബന്ധപ്പെട്ട ഗവേഷണത്തിനു നോബൽ സമ്മാനാർഹരായ ആന്ദ്രെ ഗെയിമും നൊവോസലോവും നൽകുന്ന നിർവചനമിങ്ങനെയാണ്:

ഇടതൂർന്നടുക്കപ്പെട്ട കാർബൺ അണുക്കളുടെ, ദ്വിമാന ജാലികാഘടനയുള്ള, തേനീച്ചക്കൂടിനെ അനുസ്മരിപ്പിക്കുന്ന ഒരു പരന്ന ഏകപാളിയാണ് ഗ്രാഫീൻ; മറ്റ് മാനങ്ങളിലുള്ള ഗ്രാഫൈറ്റിക പദാർത്ഥങ്ങളുടെയെല്ലാം മൌലിക രൂപഘടനയാണ് ഇത്. ഗ്രാഫീനെ ഉരുട്ടിയെടുത്താൽ 0-മാനത്തിലുള്ള ഫുള്ളറീനുകളും ഏകമാനത്തിൽ ചുരുളാക്കിയാൽ കാർബൺ നാനോറ്റ്യൂബുകളും ത്രിമാനത്തിൽ അടുക്കിവച്ചാൽ ഗ്രാഫൈറ്റും ആകും.[1]

സവിശേഷഗുണങ്ങൾ[തിരുത്തുക]

അണുഘടന[തിരുത്തുക]

ഗ്രാഫീൻ പാളികളിലെ കാർബൺ അണുക്കൾ ഷഡ്കോണാകൃതിയിലെ ജാലിക രൂപത്തിലാണ് (lattice) കാണപ്പെടുന്നത്. ഇത്തരം “വലക്കണ്ണി”കളുടെ അനന്തമായ ആവർത്തനമായി ഗ്രാഫീൻ ഷീറ്റുകളെ കാണാം. ട്രാൻസ്മിഷൻ ഇലക്ട്രോൺ മൈക്രോസ്കോപ്പി എന്ന സൂക്ഷ്മദർശനവിദ്യയിലൂടെയാണ് ഈ ഘടന വെളിവാക്കപ്പെട്ടത്. ഇലക്ട്രോൺ വിഭംഗനം ക്രമം വഴിയാണ് ഷഡ്കോണാകൃതിയിലെ ജാലികാരൂപം തിരിച്ചറിഞ്ഞത്[3]. നിരാലംബമായി കിടക്കുന്ന ഗ്രാഫീന്റെ ഷീറ്റുകളിൽ ഒരു കട്ടികുറഞ്ഞ പ്ലാസ്റ്റിക് ഷീറ്റിലെന്നപോലെ ചെറിയ “ഓളങ്ങൾ” ഉണ്ടാകുന്നതായും കണ്ടിട്ടുണ്ട്. ദ്വിമാനത്തിലെ ജാലികാ ഘടനക്ക് സഹജമായുള്ള അസ്ഥിരതയാണിത് എന്ന് ഊഹിക്കപ്പെടുന്നു[4][5].

ഇലക്ട്രോണിക് ഗുണങ്ങൾ[തിരുത്തുക]

ഊർജ്ജവും, തരംഗസംഖ്യയും (k) അങ്കങ്ങളായി രേഖപ്പെടുത്തിയ ഒരു ത്രിമാന ഗ്രാഫിൽ മുകളിലും താഴെയുമായി തൊട്ടുതൊട്ടില്ലെന്ന മട്ടിൽ നിൽക്കുന്ന, ഊർജ്ജ സ്പെക്ട്രത്തെ പ്രതിനിധീകരിക്കുന്ന, ആറുകോണുകൾ തീർക്കുന്ന സാങ്കല്പിക ത്രിമാന പ്രതലത്തിലാണ് ഗ്രാഫീന്റെ ഫെർമിതല ഊർജ്ജം കാണപ്പെടുന്നത്. ഫലത്തിൽ,ഈ ആറുബിന്ദുക്കളിൽ ഇലക്ട്രോണുകൾക്കും സുഷിരങ്ങൾക്കും ഡിറാക് സമീകരണമനുസരിക്കുന്ന കണികകളായി വർത്തിക്കാം

സഹജരൂപത്തിൽ ഗ്രാഫീന് ഒരു അർദ്ധലോഹമായോ പൂജ്യത്തോടടുത്ത ബാൻഡ് വിടവുള്ള അർദ്ധചാലകമായോ വർത്തിക്കാനാവും. ഊർജ്ജവും (E) x,y,z എന്നീ മൂന്നു തരംഗസംഖ്യയും (k) അങ്കങ്ങളായി രേഖപ്പെടുത്തിയ ഒരു ത്രിമാന ഗ്രാഫിൽ മുകളിലും താഴെയുമായി തൊട്ടുതൊട്ടില്ലെന്ന മട്ടിൽ നിൽക്കുന്ന, ഊർജ്ജ സ്പെക്ട്രത്തെ പ്രതിനിധീകരിക്കുന്ന, ആറുകോണുകൾ തീർക്കുന്ന സാങ്കല്പിക ത്രിമാന പ്രതലത്തിലാണ് ഗ്രാഫീന്റെ ഫെർമിതല ഊർജ്ജം കാണപ്പെടുന്നത്[6][7]. താഴ്ന്ന ഊർജ്ജനിലകളിൽ, ഗ്രാഫീന്റെ ദ്വിമാനമായ ഷ്ഡ്ഭുജ ബ്രീല്വാൻ മേഖലയുടെ ആറു മൂലകൾക്കു സമീപം ഊർജ്ജ-സംവേഗ ബന്ധം രേഖീയമാണ്. ഇത് ഇതിലെ ഇലക്ട്രോണുകളുടെയും സുഷിരങ്ങളുടെയും പ്രഭാവിപിണ്ഡത്തെ (effective mass) പൂജ്യമാക്കുന്നു[8]. ഫലത്തിൽ, ഈ രേഖീയ ബന്ധം മൂലം ബ്രീല്വാൻ മേഖലയുടെ ആറുമൂലകളിൽ ഇലക്ട്രോണുകൾക്കും സുഷിരങ്ങൾക്കും ഡിറാക് സമീകരണമനുസരിക്കുന്ന കണികകളായി വർത്തിക്കാം[9][10]. ഇങ്ങനെ വർത്തിക്കുന്ന ഇലക്ട്രോണുകളെയും സുഷിരങ്ങളെയും ഡിറാക് ഫെർമിയോണുകൾ എന്ന് വിളിക്കാം.

അവലംബം[തിരുത്തുക]

  1. 1.0 1.1 Geim, A. K. and Novoselov, K. S. (2007). "The rise of graphene". Nature Materials 6 (3): 183–191. PMID 17330084. ഡി.ഒ.ഐ.:10.1038/nmat1849. 
  2. ഭൌതികശാസ്ത്ര നോബൽ സമ്മാനം 2010ന്റെ പ്രഖ്യാപനം പത്രക്കുറിപ്പ്
  3. Meyer, J. et al. (2007). "The structure of suspended graphene sheets". Nature 446 (7131): 60–63. PMID 17330039. ഡി.ഒ.ഐ.:10.1038/nature05545. 
  4. Carlsson, J. M. (2007). "Graphene: Buckle or break". Nature Materials 6 (11): 801. PMID 17972931. ഡി.ഒ.ഐ.:10.1038/nmat2051. 
  5. Fasolino, A., Los, J. H., & Katsnelson, M. I. (2007). "Intrinsic ripples in graphene". Nature Materials 6 (11): 858. PMID 17891144. ഡി.ഒ.ഐ.:10.1038/nmat2011. 
  6. The Nobel Prize in Physics 2010 - Scientific Background. Nobelprize.org. 10 Oct 2010
  7. Wallace, P. R. (1947). "The Band Theory of Graphite". Physical Review 71: 622. ഡി.ഒ.ഐ.:10.1103/PhysRev.71.622. 
  8. Charlier, J.-C.; Eklund, P.C.; Zhu, J. and Ferrari, A.C. (2008). "Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes". from Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus. Berlin/Heidelberg: Springer-Verlag. 
  9. Semenoff, G. W. (1984). "Condensed-Matter Simulation of a Three-Dimensional Anomaly". Physical Review Letters 53: 5449. ഡി.ഒ.ഐ.:10.1103/PhysRevLett.53.2449. 
  10. Avouris, P., Chen, Z., and Perebeinos, V. (2007). "Carbon-based electronics". Nature Nanotechnology 2 (10): 605. PMID 18654384. ഡി.ഒ.ഐ.:10.1038/nnano.2007.300. 

"http://ml.wikipedia.org/w/index.php?title=ഗ്രാഫീൻ&oldid=1713589" എന്ന താളിൽനിന്നു ശേഖരിച്ചത്