Jump to content

ഫങ്ഷൻ

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
(ഫലനം എന്ന താളിൽ നിന്നും തിരിച്ചുവിട്ടതു പ്രകാരം)

എന്ന ഫലനത്തിന്റെ ഗ്രാഫ്
മണ്ഡലവും രംഗവും −1-നും 1.5-ക്കുമിടായ്ക്കാണ്
Wiktionary
Wiktionary
ഫങ്ഷൻ എന്ന വാക്കിനർത്ഥം മലയാളം വിക്കി നിഘണ്ടുവിൽ കാണുക

ഒരു ഗണത്തിലെ അംഗങ്ങളെ മറ്റൊരു ഗണത്തിലെ അംഗങ്ങളുമായി ബന്ധിപ്പിയ്ക്കുന്ന ഗണിത നിയമമാണ് ഫലനം(Function). ഇതിലെ ആദ്യത്തെ ഗണത്തെ മണ്ഡലം എന്നും രണ്ടാമത്തെ ഗണത്തെ രംഗം എന്നും പറയുന്നു. ഒരു ബന്ധം ഫലനമാവണമെങ്കിൽ താഴെ പറയുന്ന വ്യവസ്ഥകൾ പാലിയ്ക്കെണ്ടതായിട്ടുണ്ട്.

  • മണ്ഡലത്തിലെ ഓരോ അംഗത്തിനും രംഗത്തിൽ ഒരു നിശ്ചിതപ്രതിബിംബം വേണം
  • ഒരു അംഗത്തിന് ഒന്നിൽക്കൂടുതൽ പ്രതിബിംബങ്ങൾ ഉണ്ടാവരുത്.
  • ഫലനം ക്രമിത ജോടികളുടെ ഒരു ഗണമാണ്.ക്രമിത ജോടിയിലെ ആദ്യ നിർ‌ദ്ദേശാങ്കം മണ്ഡലത്തിലേയും രണ്ടാത്തെ നിർ‌ദ്ദേശാങ്കം രംഗത്തിലേയും അംഗങ്ങളാണ്.
  • ഒരു ഫലനത്തെ സൂചിപ്പിയ്ക്കുന്നതിനായി ഒരു സൂത്രവാക്യമോ,ആരേഖമോ,അൽഗരിതമോ ഉപയോഗിയ്ക്കാം.

സൂചിപ്പിയ്ക്കുന്നതിനുള്ള രീതികൾ

[തിരുത്തുക]

Xഎന്ന ഗണത്തിൽനിന്നും Y എന്ന ഗണത്തിലേയ്ക്കുള്ള ഫലകത്തെ ƒ: X → Y ഇപ്രകാരം സൂചിപ്പിയ്ക്കുന്നു.ഇവിടെ X മണ്ഡലവും Y രംഗവും ആണ്.

ഒരു ഫലനം ƒ എന്നാൽ, x എന്ന ഇൻപുട്ട് എടുത്ത്, ƒ(x) എന്ന ഉല്പന്നം തരുന്ന ഒരു യന്ത്രമായി കരുതാം.


അവലംബം

[തിരുത്തുക]
  • Anton, Howard (1980), Calculus with Analytical Geometry, Wiley, ISBN 978-0-471-03248-9
  • Bartle, Robert G. (1976), The Elements of Real Analysis (2nd ed.), Wiley, ISBN 978-0-471-05464-1
  • Husch, Lawrence S. (2001), Visual Calculus, University of Tennessee, archived from the original on 2011-09-24, retrieved 2007-09-27
  • Katz, Robert (1964), Axiomatic Analysis, D. C. Heath and Company.
  • Ponte, João Pedro (1992), "The history of the concept of function and some educational implications" (PDF), The Mathematics Educator, 3 (2): 3–8[പ്രവർത്തിക്കാത്ത കണ്ണി]
  • Thomas, George B.; Finney, Ross L. (1995), Calculus and Analytic Geometry (9th ed.), Addison-Wesley, ISBN 978-0-201-53174-9
  • Youschkevitch, A. P. (1976), "The concept of function up to the middle of the 19th century", Archive for History of Exact Sciences, 16 (1): 37–85, doi:10.1007/BF00348305.
  • Monna, A. F. (1972), "The concept of function in the 19th and 20th centuries, in particular with regard to the discussions between Baire, Borel and Lebesgue", Archive for History of Exact Sciences, 9 (1): 57–84, doi:10.1007/BF00348540.
  • Kleiner, Israel (1989), "Evolution of the Function Concept: A Brief Survey", The College Mathematics Journal, 20 (4), Mathematical Association of America: 282–300, doi:10.2307/2686848, JSTOR 2686848.
  • Ruthing, D. (1984), "Some definitions of the concept of function from Bernoulli, Joh. to Bourbaki, N.", Mathematical Intelligencer, 6 (4): 72–77.
  • Dubinsky, Ed; Harel, Guershon (1992), The Concept of Function: Aspects of Epistemology and Pedagogy, Mathematical Association of America, ISBN 0883850818.
  • Malik, M. A. (1980), "Historical and pedagogical aspects of the definition of function", International Journal of Mathematical Education in Science and Technology, 11 (4): 489–492, doi:10.1080/0020739800110404.
  • Boole, George (1854), An Investigation into the Laws of Thought on which are founded the Laws of Thought and Probabilities", Walton and Marberly, London UK; Macmillian and Company, Cambridge UK. Republished as a googlebook.
  • Eves, Howard. (1990), Foundations and Fundamental Concepts of Mathematics: Third Edition, Dover Publications, Inc. Mineola, NY, ISBN 0-486-69609-X (pbk) {{citation}}: Check |isbn= value: invalid character (help)
  • Frege, Gottlob. (1879), Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle
  • Grattan-Guinness, Ivor and Bornet, Gérard (1997), George Boole: Selected Manuscripts on Logic and its Philosophy, Springer-Verlag, Berlin, ISBN 3-7643-5456-9 (Berlin...) {{citation}}: Check |isbn= value: invalid character (help)CS1 maint: multiple names: authors list (link)
  • Halmos, Paul R. (1970) Naive Set Theory, Springer-Verlag, New York, ISBN 0-387-90092-6.
  • Hardy, Godfrey Harold (1908), A Course of Pure Mathematics, Cambridge University Press (published 1993), ISBN 978-0-521-09227-2
  • Reichenbach, Hans (1947) Elements of Symbolic Logic, Dover Publishing Inc., New York NY, ISBN 0-486-24004-5.
  • Russell, Bertrand (1903) The Principles of Mathematics: Vol. 1, Cambridge at the University Press, Cambridge, UK, republished as a googlebook.
  • Russell, Bertrand (1920) Introduction to Mathematical Philosophy (second edition), Dover Publishing Inc., New York NY, ISBN 0-486-27724-0 (pbk).
  • Suppes, Patrick (1960) Axiomatic Set Theory, Dover Publications, Inc, New York NY, ISBN 0-486-61630-4. cf his Chapter 1 Introduction.
  • Tarski, Alfred (1946) Introduction to Logic and to the Methodolgy of Deductive Sciences, republished 1195 by Dover Publications, Inc., New York, NY ISBN 0-486-28462-X
  • Venn, John (1881) Symbolic Logic, Macmillian and Co., London UK. Republished as a googlebook.
  • van Heijenoort, Jean (1967, 3rd printing 1976), From Frege to Godel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, MA, ISBN 0-674-32449-8 (pbk)
    • Gottlob Frege (1879) Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought with commentary by van Heijenoort, pages 1–82
    • Giuseppe Peano (1889) The principles of arithmetic, presented by a new method with commentary by van Heijenoort, pages 83–97
    • Bertrand Russell (1902) Letter to Frege with commentary by van Heijenoort, pages 124–125. Wherein Russell announces his discovery of a "paradox" in Frege's work.
    • Gottlob Frege (1902) Letter to Russell with commentary by van Heijenoort, pages 126–128.
    • David Hilbert (1904) On the foundations of logic and arithmetic, with commentary by van Heijenoort, pages 129–138.
    • Jules Richard (1905) The principles of mathematics and the problem of sets, with commentary by van Heijenoort, pages 142–144. The Richard paradox.
    • Bertrand Russell (1908a) Mathematical logic as based on the theory of types, with commentary by Willard Quine, pages 150–182.
    • Ernst Zermelo (1908) A new proof of the possibility of a well-ordering, with commentary by van Heijenoort, pages 183–198. Wherein Zermelo rails against Poincaré's (and therefore Russell's) notion of impredicative definition.
    • Ernst Zermelo (1908a) Investigations in the foundations of set theory I, with commentary by van Heijenoort, pages 199–215. Wherein Zermelo attempts to solve Russell's paradox by structuring his axioms to restrict the universal domain B (from which objects and sets are pulled by definite properties) so that it itself cannot be a set, i.e., his axioms disallow a universal set.
    • Norbert Wiener (1914) A simplification of the logic of relations, with commentary by van Heijenoort, pages 224–227
    • Thoralf Skolem (1922) Some remarks on axiomatized set theory, with commentary by van Heijenoort, pages 290–301. Wherein Skolem defines Zermelo's vague "definite property".
    • Moses Schönfinkel (1924) On the building blocks of mathematical logic, with commentary by Willard Quine, pages 355–366. The start of combinatory logic.
    • John von Neumann (1925) An axiomatization of set theory, with commentary by van Heijenoort , pages 393–413. Wherein von Neumann creates "classes" as distinct from "sets" (the "classes" are Zermelo's "definite properties"), and now there is a universal set, etc.
    • David Hilbert (1927) The foundations of mathematics by van Heijenoort, with commentary, pages 464–479.
  • Whitehead, Alfred North and Russell, Bertrand (1913, 1962 edition), Principia Mathematica to *56, Cambridge at the University Press, London UK, no ISBN or US card catalog number.

പുറത്തേക്കുള്ള കണ്ണികൾ

[തിരുത്തുക]


"https://ml.wikipedia.org/w/index.php?title=ഫങ്ഷൻ&oldid=4097379" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്