ലഘുതമ സാധാരണ ഗുണിതം

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
(Least common multiple എന്ന താളിൽ നിന്നും തിരിച്ചുവിട്ടതു പ്രകാരം)
Jump to navigation Jump to search

രണ്ടു സംഖ്യകളുടെ പൊതുഗുണിതങ്ങളിൽ ഏറ്റവും ചെറിയ സംഖ്യയെയാണ്‌ ലഘുതമ സാധാരണ ഗുണിതം അഥവാ ല.സാ.ഗു. (ലസാഗു) എന്നു പറയുന്നത്‌. അതായത് ഈ രണ്ടു സംഖ്യകളുടെയും ഗുണിതങ്ങളിൽ ഉൾപ്പെടുന്ന പൂജ്യമല്ലാത്ത ഏറ്റവും ചെറിയ സംഖ്യയാണിത്. ("ഇംഗ്ലീഷ്: least common multiple , lowest common multiple (lcm) അഥവാ smallest common multiple) ഉദാഹരണം നാല്‌, ആറ്‌ എന്നീ സംഖ്യകളുടെ ഗുണിതങ്ങൾ താഴെ കൊടുക്കുന്നു.

4: 4,8,12,16,20,24,28,32,36,40,44,48,52.....

6: 6,12,18,24,30,36,42,48,54,...

രണ്ടിലും വരുന്ന ഗുണിതങ്ങൾ പന്ത്രണ്ട്‌, ഇരുപത്തിനാല്‌, നാൽപത്തി എട്ട്‌ എന്നിങ്ങനെയാണെന്നു കാണാം. ഇതിൽ ഏറ്റവും ചെറിയത്‌ പന്ത്രണ്ട്‌ ആയതിനാൽ ഇതിനെ നാലിന്റെയും ആറിന്റെയും ലഘുതമ സാധാരണ ഗുണിതം (ല. സാ. ഗു.) എന്നു വിളിക്കുന്നു.

കണക്കാക്കുന്ന രീതി[തിരുത്തുക]

അവലോകനത്തിലൂടെ ല സാ ഗു കണക്കാക്കുന്നതാണ്‌ എളുപ്പമുള്ള ആദ്യ വഴി. ഉദാഹരണമായി, മൂന്ന്‌, നാല്‌ എന്നീ സംഖ്യകളുടെ ല സാ ഗു കാണുന്നതിനായി അവയുടെ ഗുണിതങ്ങൾ നോക്കുക:

3: 3,9,12,15

4: 4,8,12,16

ഏറ്റവും കുറഞ്ഞ ഗുണിതം പന്ത്രണ്ട്‌ ആണെന്നു കാണാം. സാമാന്യമായി രണ്ടു സംഖകളുടെയും ഗുണനം നോക്കുന്നതാണ് മറ്റൊരു വഴി. ഇവിടെ 3 x 4 = 12 എന്നു ലഭിക്കുന്നതായി കാണാം.

അതേ സമയം രണ്ടു സംഖ്യകൾക്കും ഘടകകങ്ങൾ ഉണ്ടെങ്കിൽ ഈ രീതി പര്യാപ്തമാവുകയില്ല. അവിടെ രണ്ടു സംഖകളുടെയും ഉത്തമ സാധാരണ ഘടകം കാണേണ്ടതായി വരുന്നു. ഉദാഹരണമായി, നാലിണ്റ്റെയും ആറിണ്റ്റെയും ല സാ ഗു തന്നെ എടുത്തു നോക്കാം. രണ്ടു സംഖ്യകളുടെയും ഉത്തമ സാധാരണ ഘടകം (ഉ. സാ. ഘ) കാണുന്നതാണ്‌ ആദ്യ പടി. ഇവിടെ ഉ സാ ഘ രണ്ട്‌ എന്നു ലഭിക്കുന്നു. ഇനി നാലിണ്റ്റെയും ആറിണ്റ്റെയും ഗുണനം 24 നെ ഉ സാ ഘ കൊണ്ട്‌ ഹരിക്കുന്നു. അതായത്‌,

4 x 6 ÷ 2 = 12

ഉപയോഗങ്ങൾ[തിരുത്തുക]

‍ഭിന്നസംഖ്യകൾ കൂട്ടുക, കുറയ്ക്കുക, താരതമ്യം ചെയ്യുക എന്നിങ്ങനെയുള്ള ഗണിതക്രിയകൾക്ക് ല.സാ.ഗു. ഉപയോഗിക്കുന്നു.

ഇതും കാണുക[തിരുത്തുക]

ഉത്തമ സാധാരണ ഘടകം.

"https://ml.wikipedia.org/w/index.php?title=ലഘുതമ_സാധാരണ_ഗുണിതം&oldid=3082339" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്