സമാന്തരശ്രേണി
Jump to navigation
Jump to search
ഗണിതശാസ്ത്രത്തിൽ സമാന്തര ശ്രേണിയെന്നാൽ അടുത്തടുത്ത രണ്ട് സംഖ്യകളുടെ വ്യത്യാസം തുല്യമായ സംഖ്യകളുടെ ശ്രേണിയാണ്. ഓരോ ശ്രേണിയുടെയും ഈ വ്യത്യാസത്തെ ആ ശ്രേണിയുടെ പൊതുവ്യത്യാസം(common difference) എന്ന് പറയുന്നു. ഉദാഹരണമായി 5 ,7,9,11,13,15,... എന്നിങ്ങനെ പദങ്ങളായ(terms) സമാന്തര ശ്രേണിയിൽ പൊതുവ്യത്യാസം 2 ആണ്.
ഒരു സമാന്തരശ്രേണിയുടെ ആദ്യപദം ഉം അടുത്തടുത്ത പദങ്ങളുടെ പൊതുവ്യത്യാസം dയും ആയാൽ n-ാം പദം()
അഥവാ പൊതുവായി
ഒരു സമാന്തരശ്രേണിയുടെ സ്വഭാവം അതിന്റെ പൊതുവ്യതാസത്തിൽ അധിഷ്ടിതമാണ്.
- പൊതുവ്യത്യാസം പോസിറ്റീവ് ആണെങ്കിൽ ശ്രേണിയിലെ പാദങ്ങൾ പോസിറ്റീവ് അനന്തതയിലേക്ക് വർധിക്കും.
- പൊതുവ്യത്യാസം നെഗറ്റീവ് ആണെങ്കിൽ ശ്രേണിയിലെ പാദങ്ങൾ നെഗറ്റീവ് അനന്തതയിലേക്ക് വർധിക്കും.
സമവാക്യങ്ങൾ[തിരുത്തുക]
n-ാം പദം[തിരുത്തുക]
ഒരു സമാന്തര ശ്രേണിയിലെ n-ാം പദം ആദ്യത്തെ പദത്തോട് പൊതുവ്യത്യാസം (n-1) തവണ കൂട്ടണം. ഇതിന്റെ ബീജഗണിതരൂപം ചുവടെ കൊടുത്തിരിക്കുന്നു.
- അല്ലെങ്കിൽ പൊതുവാ f+(n-1)d
തുക[തിരുത്തുക]
ഒന്ന് മുതൽ n വരെയുള്ള എണ്ണൽ സംഖ്യകളുടെ തുക
ഒരു സമാന്തരശ്രേണിയിലെ ആദ്യപദം f , പൊതുവ്യത്യാസം d യും ആണെങ്കിൽ ആദ്യത്തെ n പദങ്ങളുടെ തുക
- [1]
- ബീജഗണിതരൂപം
- \X_n=a_n+b
അവലംബം[തിരുത്തുക]
- ↑ കേരള വിദ്യാഭ്യാസ വകുപ്പ് പുറത്തിറക്കിയ കേരള പാഠാവലി പത്താംതരം ഗണിതശാസ്ത്രപുസ്തകം - 2004, പേജ് നം. 7 (പി.ഡി.എഫ്. പതിപ്പ്.
- Sigler, Laurence E. (trans.) (2002). Fibonacci's Liber Abaci. Springer-Verlag. pp. 259–260. ISBN 0-387-95419-8.