സമവാക്യനിർദ്ധാരണം
ദൃശ്യരൂപം
ഒരു സമതയിലെ ചരങ്ങളുടെ വില കണ്ടെത്തുന്ന ഗണിതക്രിയയെയാണ് സമവാക്യനിർദ്ധാരണം എന്നറിയപ്പെടുന്നത്. ആ വിലകളെ, സമതയുടെ മൂല്യങ്ങൾ (Roots) എന്നു വിളിക്കുന്നു. ഒരേ മൂല്യങ്ങൾ ഉള്ള സമതകൾ തുല്യസമതകളാണ് (Equivalent Equations). x2 = 3x - 2 എന്ന സമതയുടേയും x2 + 2 = 3x എന്ന സമതയുടെയും രണ്ടു മൂല്യങ്ങളും (അതായത്, 1,2 എന്നീ സംഖ്യകൾ) തുല്യങ്ങളാണ്. അതുകൊണ്ട് അവ തുല്യസമതകളാണ്.
ഒരു സമതയെ അതിന്റെ തുല്യസമതകൾ കൊണ്ട് തുടർച്ചയായി മാറ്റി ലഘൂകരിച്ചു കൊണ്ട് നിർദ്ധാരണം ചെയ്യുന്നത്. സമതകൾ നിർദ്ധാരണം ചെയ്യുന്നതിന് സാധാരണ താഴെക്കാണുന്ന ഉപായങ്ങൾ പ്രയോഗിക്കുന്നു:
- തുല്യസമതകൾകൊണ്ടുള്ള പുന:സ്ഥാപനം. (x+1)2 = 2x + 5 എന്ന സമതയെ x2+ 2x +1 = 2x + 5 എന്ന് മാറ്റാം.
- സമതയിലെ പദങ്ങൾ ഇരുവശത്തേക്കും ക്രമീകരിച്ചുകൊണ്ട്. x2+ 2x +1 = 2x + 5 എന്നത്, x2+ 2x +1 - 2x - 5 = 0 എന്നെഴുതാം. ഇതിൽ നിന്ന് x2 - 4 = 0 എന്ന സമത ലഭിക്കുന്നു. ഇത് ആദ്യസമതയുടെ തുല്യസമതയാണ്.
- സമതയുടെ ഇരുവശത്തും ഒരേ സംഖ്യകൊണ്ടോ, ഒരേ വ്യഞ്ജകം കൊണ്ട് ഹരിക്കുകയോ ഗുണിക്കുകയോ ചെയ്തുകൊണ്ടോ; എന്നാൽ ഇപ്രകാരം ചെയ്യുമ്പോൾ, വ്യഞ്ജകങ്ങൾ, പൂജ്യമായിത്തീരാൻ സാധിക്കുന്നവയായിരിക്കരുത്; അത് പുതിയ തുല്യസമതയെ സൃഷ്ടിക്കുകയില്ല. ഉദാഹരണത്തിന്, (x+2) (x-1) = 4 (x-1) എന്ന സമതയെ, (x-1) എന്ന വ്യഞ്ജകം കൊണ്ടു വിഭജിക്കുമ്പോൾ, x+2 = 4 എന്ന സമത ലഭിക്കുന്നു. ഇതിന് x=2 എന്ന ഒരു മൂല്യം മാത്രമാണുള്ളത്, എന്നാൽ ആദ്യസമതയ്ക്ക്, X=1 എന്ന മറ്റൊരു മൂല്യം കൂടിയുണ്ട്. അതുപോലെ, x+2 = 4 എന്ന സമത നിർദ്ധാരണം ചെയ്യുമ്പോൾ, സമതയുടെ ഇരുവശത്തും (x-1) എന്ന വ്യഞ്ജകം കൊണ്ടു ഗുണിച്ചാൽ കിട്ടുന്ന പുതിയ സമതയ്ക്ക്, x=2 എന്ന ഒരു മൂല്യമാത്രമുള്ള ആദ്യസമതയേക്കാൾ, x=1 എന്ന ഒരു മൂല്യം കൂടുതലായുണ്ട്. അതുകൊണ്ട്, സമതകൾ നിർദ്ധാരണം ചെയ്യുമ്പോൾ, ഇങ്ങനെ ആദ്യസമതയുടേ മൂല്യങ്ങൾ നഷ്ടപ്പെടാതിരിക്കുവാനും, പുതിയ മൂല്യങ്ങൾ അധികമായി വന്നു ചേരാതിരിക്കുവാനും സവിശേഷം ശ്രദ്ധിക്കണം.
- അതുപോലെ ഒരു സമതയുടെ ഇരുവശവും ഒരു കൃത്യങ്കം കൊണ്ട് ഉയർത്തുവാനും, ഒരേപോലെ മൂലനിർണയം ചെയ്യുവാനും കഴിയും. എന്നാൽ, അപ്രകാരം കിട്ടുന്ന സമതകൾ തുല്യങ്ങളായിക്കൊള്ളണമെന്നില്ല; ഉദാഹരണത്തിന്, 2x=6 എന്ന സമതയ്ക്, x=3 ഒരു മൂല്യം മാത്രമാണുള്ളത്; എന്നാൽ, (2x)2=36 എന്ന സമതയ്ക്ക്, x= 3, -3 എന്നിങ്ങനെ രണ്ട് മൂല്യങ്ങളുണ്ട്. അതുകൊണ്ട്, ഈ സവിശേഷത പ്രധാനമായും ശ്രദ്ധിച്ചിരിക്കണം.
"P(x)=ax²+can bx+c എന്ന ബഹുപദത്തിൽ P(x)=0 എന്നു കിട്ടും"