വിശ്ലേഷകഫലനം

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.

ഗണിതശാസ്ത്രശാഖയായ സമ്മിശ്രവിശ്ളേഷണ(complex analysis)ത്തിലെ ഗണിതപ്രാധാന്യമുള്ള ഫലനം. വിശ്ളേഷകഫലനം, ഹോളൊമോർഫികഫലനം (Holomorphic function), നിയമിതഫലനം (Regular function) എന്നീ പേരുകളിലും ഇതറിയപ്പെടുന്നു.

ചരിത്രം[തിരുത്തുക]

വിശ്ളേഷണഫലന സിദ്ധാന്ത(അനലിറ്റിക് ഫങ്ഷൻ)ത്തിന്റെ ആദ്യകാല ഗവേഷകർ കോഷി, റീമാൻ, വെയർസ്റ്റ്രോസ് എന്നിവരാണ്. വ്യുത്പന്നം (derivative) അഥവാ അവകലജഗുണാങ്കം (differential coefficient) ഉള്ള ഫലനങ്ങളാണ് കോഷിസിദ്ധാന്തത്തിന്റെ അടിസ്ഥാനം. സമ്മിശ്രസമാകല(complex integration)ത്തിന്റെ ഉപാധിയിലൂടെയാണ് 1814-ൽ കോഷി ഈ സിദ്ധാന്തത്തിനു രൂപംകൊടുത്തത്. ഗണിതശാസ്ത്രജ്ഞനായ ഗൂർഷ (Goursat) 1900-ത്തിൽ അതിനെ നവീകരിച്ചു. അനലിറ്റിക് ഫങ്ഷന്റെ ജ്യാമിതീയ പ്രാധാന്യമാണ് റീമാൻ പഠന വിധേയമാക്കിയത്. ഘാതശ്രേണി (power series) ആണ് വെയർസ്റ്റ്രോസ്തത്ത്വത്തിന്റെ അടിസ്ഥാനം. വിശ്ളേഷക-അവിച്ഛിന്നത(analytic continuum)യുടെ താത്ത്വിക വശങ്ങളിലാണ് വെയർസ്റ്റ്രോസ് ശ്രദ്ധിച്ചത്.

സമ്മിശ്രചരങ്ങളുടെ ഫലനം (function of complex variables). R, S എന്നീ രണ്ടു സമ്മിശ്ര സംഖ്യാഗണങ്ങൾ (sets of complex numbers) ആദ്യത്തേതിലെ ഓരോ അംഗ(z)ത്തിനും രണ്ടാമത്തേതിലെ ഒരംഗത്തെ നിർദ്ദേശിക്കുന്ന നിയമം (f) ആണ്, ഇവിടെ 'ഫലനം' എന്നതുകൊണ്ടു സൂചിപ്പിക്കപ്പെടുന്നത്. ഫലനത്തിന്റെ ഡൊമെയിൻ(മണ്ഡലം ,domain) R-ഉം റെയിഞ്ച്(രംഗം ,range) S-ഉം ആണ്. ഡൊമെയിൻ ഒരു വിവൃത-ബന്ധിതം (open connected) ആയിരിക്കും. ഇത്തരം R-ഗണത്തെ റീജിയൻ (region) എന്നു പറയുന്നു. R-റീജിയനിൽ f(z) നിർവചിക്കപ്പെട്ടിരിക്കുന്നു; Z എന്ന സമ്മിശ്രചരം Z0-നോടു സമീപിക്കുമ്പോൾ,


എന്ന അംശബന്ധം (ratio) ഒരു പരിമേയ സീമ(finite limit)യോടടുക്കുന്നു; എങ്കിൽ R-ലെ Z0 ബിന്ദുവിൽ f(Z) അവകലനീയം (differentiable) ആണ് എന്നു പറയുന്നു. Z0-ലേക്കു Z അടുക്കുന്ന രൂപരേഖ (contour) ഏതു തന്നെ ആയാലും f(Z) - f(Z0)/Z-Z0-ന്റെ സീമയ്ക്കു മാറ്റമുണ്ടാകാൻ പാടില്ല. ഈ സീമയെ f(Z)-ന്റെ Z0 എന്ന ബിന്ദുവിലെ വ്യുത്പന്നം (derivative) f'(Z) എന്നു പറയുന്നു. R-ലുള്ള എല്ലാ ബിന്ദുക്കളിലും f'(Z)-നു അസ്തിത്വമുണ്ടെങ്കിൽ f(Z) എന്ന ഫലനം R എന്ന പ്രദേശത്തു വിശ്ളേഷകമാണെന്നു പറയുന്നു. n ഒരു ധനാത്മകപൂർണസംഖ്യ ആണെങ്കിൽ Zn പരിമിത (സമ്മിശ്ര) തലത്തിൽ വിശ്ളേഷകമാണ്. അതുകൊണ്ട് എല്ലാ ബഹുപദങ്ങളും (polynominals) വിശ്ളേഷകഫലനങ്ങളാണ്.


f(Z) = u(x,y) + i v(x, y) സമ്മിശ്രതലത്തിലെ R-റീജിയനിൽ വിശ്ളേഷകമാണെന്നു കരുതിയാൽ u(x,y), v(x, y) എന്നീ വാസ്തവികമൂല്യ ഫലനങ്ങൾ (real valued functions) താഴെ പറയുന്ന സമവാക്യങ്ങൾക്ക് അനുസൃതമായിരിക്കുമെന്നു കാണാം.


എന്നിവയെ കോഷി-റീമാൻ സമവാക്യങ്ങൾ (Cauchy-Riemann equations) എന്നു പറയുന്നു. ഇതിൽ പെടുന്ന ആംശികവ്യുത്പന്നങ്ങൾ (partial derivatives), കോഷി-റീമാൻ സമവാക്യങ്ങളെ തൃപ്തിപ്പെടുത്തുന്ന അവിച്ഛിന്ന ഫലനങ്ങൾ (continuous functions) ആണെങ്കിൽ R-പ്രദേശത്ത്

f(z) = u(x,y) + iv (x,y)

എന്ന ഫലനം വിശ്ളേഷകമായിരിക്കും.

ഘാതശ്രേണി (Power Series). Σ എന്ന ഘാതശ്രേണി, |z-a|യുടെ മൂല്യം pഎന്നൊരു വാസ്തവിക സംഖ്യയിൽ കുറഞ്ഞിരിക്കുമ്പോൾ, അഭികേന്ദ്രസരണവും (convergent) കൂടുതലായിരിക്കുമ്പോൾ അപകേന്ദ്രസരണവും (divergent) ആണെങ്കിൽ p, ആ ശ്രേണിയുടെ അഭികേന്ദ്രസരണ വ്യാസാർധം (radius of convergence) ആകുന്നു. തുല്യമായിരിക്കുമ്പോൾ z-ബിന്ദുക്കളുടെ ബിന്ദുപഥം (locus) വൃത്തമാണ്. ഇതാണ് ശ്രേണിയുടെ അഭികേന്ദ്രസരണവൃത്തം (circle of convergence). ഈ വൃത്തത്തിൻമേലുള്ള ബിന്ദുക്കളിൽ, ശ്രേണി അഭികേന്ദ്രസരണമോ അപകേന്ദ്രസരണമോ ആകാം. p-യുടെ മൂല്യം കണ്ടുപിടിക്കാൻ

1/p =സീമ |an|1/n

എന്ന സമവാക്യം ഉപയോഗിക്കുന്നു (നോ: അങ്കനങ്ങൾ, ഗണിത) ഈ വൃത്തത്തിനുള്ളിൽ ഘാതശ്രേണിയുടെ സങ്കലനഫലനം (sum function) f(z) ഒരു വിശ്ളേഷകഫലനമായിരിക്കും.

കോഷി സിദ്ധാന്തം (Cauchy Theory). വിശ്ളേഷകഫലനങ്ങളുടെ സവിശേഷതകളിൽ പലതും തെളിയിക്കുന്നത്, സമ്മിശ്ര സമാകലം ഉപയോഗിച്ചാണ്. പരിമേയമായ (finite) നിഷ്കോണചാപങ്ങ(smooth arcs)ളുടെ അവിച്ഛിന്ന ശൃംഖലയ്ക്ക് രൂപരേഖ (contour) എന്നു പറയുന്നു.

x=ø;(t) ; y= ψ(t)

a≤t≤b എന്നിവ c എന്ന രൂപരേഖയെ നിർവചിക്കുന്നു. ഇവിടെ ø(t), ψ(t) എന്നീ ഫലനങ്ങൾ എന്ന വാസ്തവിക പ്രാചല(real parameter)ത്തിന്റെ ഭാഗിക-അവിച്ഛിന്ന ഫലനമാണ് (piecewise continuous function). c എന്ന രൂപരേഖയിൽ f(z) ഭാഗിക-അവിച്ഛിന്നഫലനമാണെന്നു കരുതുക. f(z)-ന്റെ, c-യിലെ രൂപരേഖാസമാകലം (contour integral) നിർവചിക്കപ്പെടുന്നതിങ്ങനെയാണ്:


കോഷി-ഗൂർഷാപ്രമേയമനുസരിച്ച്, c എന്ന സംവൃത രൂപരേഖയിലും അതിനകത്തും f(z)വിശ്ളേഷകമാണെങ്കിൽ

c f(z)dz = 0 വിശ്ളേഷകഫലന സിദ്ധാന്തത്തിലെ പലനിഗമനങ്ങൾക്കും അടിസ്ഥാനം ഈ പ്രമേയമാണ്. c എന്ന രൂപരേഖയിൽ f(z)-ന്റെ രൂപരേഖാസമാകലമാണ്


വിശ്ളേഷകഫലനത്തിന്റെ വ്യുത്പന്നങ്ങളും വിശ്ളേഷകമായിരിക്കും.

വിശ്ളേഷകഫലനത്തിന്റെ ഘാതശ്രേണീവികാസം (Power series development of an Analytic function). സമ്മിശ്രതലത്തിൽ f(z) വിശ്ളേഷകമാകാതിരിക്കുന്ന ബിന്ദുവിനെയാണ് വിചിത്രത (singularity) എന്നു പറയുന്നത്. a എന്ന ബിന്ദുവിന്റെ 'സാമീപ്യ'ത്തിൽ f(z)-നു വേറെ വിചിത്രതകളില്ലെങ്കിൽ z = a-യെ f(z)-ന്റെ ഏകാന്തവിചിത്രത (isolated singularity) എന്നു പറയുന്നു.

|z-a|≤ r1, |z-a|≤r2 എന്നിവ രണ്ടു വൃത്തങ്ങളാണ്. കേന്ദ്രം x = a. r1നും r2നുമിടയ്ക്കുള്ള പ്രദേശം (c) വലയാകാരം (ring shaped) ആയിരിക്കും. c-യിൽ f(z) വിശ്ളേഷകമാണെങ്കിൽ, f(z) = Σn=0 an(z-a)n + &Sigma n=1bn(z-a)-n


ഇവിടെ an, bn എന്നിവ കണക്കാക്കാൻ കഴിയും. b1, b2 എന്നു തുടങ്ങിയവയെല്ലാം പൂജ്യം ആണെങ്കിൽ, z = a ഒരു അപനേയ വിചിത്രത (removable singularity) എന്നും, f(z)-ന്റെ ശ്രേണിയിലെ രണ്ടാംഭാഗം (മുഖ്യഭാഗം) ഒരു അനന്തശ്രേണിയാണെങ്കിൽ z = a ഒരു അനിവാര്യവിചിത്രത (essential singularity) എന്നും മുഖ്യ ഭാഗത്തിൽ പദങ്ങളുടെ എണ്ണം പരിമേയം (finite) ആണെങ്കിൽ x = a ഒരു ധ്രുവം (pole) എന്നും പറയുന്നു. z = a എന്ന ബിന്ദുവിലുള്ള f(z)-ന്റെ പരിശിഷ്ടം ആണ് b1.

പരിശിഷ്ടപ്രമേയം (Residue Theorem).

cf(z)d(z) = 0


ആകണമെങ്കിൽ രൂപരേഖ (c)-യിലും അതിനകത്തും f(z) വിശ്ളേഷകമായിരിക്കണം. എന്നാൽ c-യിലും c-യുടെ അകത്തു പരിമേയ വിചിത്രതകളൊഴിച്ചുള്ള (finite singularities) ബിന്ദുക്കളിലും f(z) വിശ്ളേഷകമാണെങ്കിൽ,


ഇതിൽ Ri രൂപരേഖയുടെ അകത്തുള്ള z = zi എന്ന വിചിത്രതയിലെ പരിശിഷ്ടം കുറിക്കുന്നു. ഇതാണ് കോഷിയുടെ പരിശിഷ്ടപ്രമേയം. ഈ പ്രമേയം ചില നിശ്ചിതസമാകലങ്ങളുടെ മൂല്യം നിർണയിക്കാനുപയോഗിക്കാറുണ്ട്. കൂടാതെ എലിപ്റ്റികഫലനസിദ്ധാന്ത(elliptic function theory)ത്തിൽ ഈ പ്രമേയത്തിനു വളരെ പ്രാധാന്യമുണ്ട്. നോ: അനാലിസിസ്, അവകലനം സമാകലനം, ഗണസിദ്ധാന്തം, ഫലനം (ഗണിതം), സമ്മിശ്രവിശ്ളേഷണം


അവലംബം[തിരുത്തുക]

കടപ്പാട്: കേരള സർക്കാർ ഗ്നൂ സ്വതന്ത്ര പ്രസിദ്ധീകരണാനുമതി പ്രകാരം ഓൺലൈനിൽ പ്രസിദ്ധീകരിച്ച മലയാളം സർ‌വ്വവിജ്ഞാനകോശത്തിലെ അനലിറ്റിക് ഫങ്ഷൻ എന്ന ലേഖനത്തിന്റെ ഉള്ളടക്കം ഈ ലേഖനത്തിൽ ഉപയോഗിക്കുന്നുണ്ട്. വിക്കിപീഡിയയിലേക്ക് പകർത്തിയതിന് ശേഷം പ്രസ്തുത ഉള്ളടക്കത്തിന് സാരമായ മാറ്റങ്ങൾ വന്നിട്ടുണ്ടാകാം.
"https://ml.wikipedia.org/w/index.php?title=വിശ്ലേഷകഫലനം&oldid=3770964" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്