ലോഗരിതം

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
Jump to navigation Jump to search
Plots of logarithm functions, with three commonly used bases. The special points logb b = 1 are indicated by dotted lines, and all curves intersect in logb 1 = 0.
Graph showing a logarithmic curve, crossing the x-axis at x= 1 and approaching minus infinity along the y-axis.
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log2(8) = 3 and 23 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it.

ഒരു ആധാരസംഖ്യയുടെ എത്രാമത് ഘാതമാണ് നിർദ്ദിഷ്ടസംഖ്യ എന്ന് കാണിക്കുന്ന സംഖ്യ അതായത് ഘാതാങ്കം ആണ് ലോഗരിതം. m എന്ന സംഖ്യയെ an എന്ന രൂപത്തിലെഴുതിയാൽ a ആധാരവും n, m-ന്റെ ലോഗരിതവും ആണ്.

പൂർണ്ണസംഖ്യയും ദശാംശസംഖ്യയും ചേർന്നതാണ് ലോഗരിതം. പൂർണ്ണസംഖ്യയെ പൂർണ്ണാംശം എന്നും ദശാംശസംഖ്യയെ ഭിന്നാംശം എന്നും വിളിക്കുന്നു. ഉദാഹരണത്തിന് 2.345 എന്നതിൽ 2 പൂർണ്ണാംശവും 0.345എന്നത് ഭിന്നാംശവും ആണ്.

രണ്ട് തരം ലോഗരിതങ്ങൾ ഉപയോഗത്തിലുണ്ട്.

  1. സാധാരണ ലോഗരിതം(Common logarithm) അഥവാ ബ്രിഗ് ലോഗരിതം. 10 ആധാരമായ ലോഗരിതമാണ് സാധാരണ ലോഗരിതം. ഇതിനെ log എന്നാണ് സൂചിപ്പിക്കുന്നത്.
  2. സ്വാഭാവിക ലോഗരിതം(Natural logarithm) അഥവാ നേപിയർ ലോഗരിതം. e ആധാരമായ ലോഗരിതമാണ് സ്വാഭാവിക ലോഗരിതം. ഇതിനെ loge എന്നോ ln എന്നോ സൂചിപ്പിക്കുന്നു.

അവലംബം[തിരുത്തുക]

ഹൈസ്കൂൾ ശാസ്ത്രനിഘണ്ടു,കേരള ശാസ്ത്രസാഹിത്യപരിഷത്ത് പ്രസിദ്ധീകരണം

"https://ml.wikipedia.org/w/index.php?title=ലോഗരിതം&oldid=3426646" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്