തൊടുവര

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
(ടാൻജെന്റ് എന്ന താളിൽ നിന്നും തിരിച്ചുവിട്ടതു പ്രകാരം)
Jump to navigation Jump to search
ഒരു വക്രത്തിന്റെ തൊടുവര.
ഒരു ഗോളത്തിന്റെ തൊടുതലം.

ഒരു വക്രത്തിലെ ഒരു ബിന്ദു മാത്രം ഉൾക്കൊള്ളുന്ന രേഖയാണ് വക്രത്തിന്റെ ആ ബിന്ദുവിലെ ടാൻജെന്റ്. ഇത് സ്പർശകം അഥവാ സ്പർശരേഖ (tangent line) എന്നും അറിയപ്പെടുന്നു. സ്പർശരേഖകൾ എന്നാണ് തൊടുവരകൾ എന്നതിന്റെ പഴയപേര്. വക്രത്തിൽ ഒരു ബിന്ദുവിലുള്ള സ്പർശകം ആ ബിന്ദുവിലൂടെയുള്ള ഏതെങ്കിലും ഛേദകരേഖ(secant)യുടെ സീമാന്തസ്ഥാന (limiting position)മായി കരുതാവുന്നതാണ്.

പ്രത്യേകതകൾ[തിരുത്തുക]

  • ഒരു വൃത്തത്തെ ഒരു ബിന്ദുവിൽ തൊടുന്ന വരയെ വൃത്തത്തിന്റെ തൊടുവര എന്നുപറയുന്നു.
  • ഒരു വൃത്തത്തിലെ ഒരു ബിന്ദുവിൽക്കൂടിയുള്ള രേഖ, ആ ബിന്ദുവിൽക്കൂടി യുള്ള ആരത്തിനു ലംബമാണെങ്കിൽ ആ രേഖ വൃത്തത്തിന്റെ തൊടുവരയായിരിക്കും.
  • ഒരു വൃത്തത്തിലെ ഒരു ബിന്ദുവിലെ തൊടുവര ആ ബിന്ദുവിൽക്കൂടിയുള്ള ആരത്തിനു ലംബമാണ്.ഒരു ബാഹ്യബിന്ദുവിൽ നിന്ന് ഒരു വൃത്തത്തിലേയ്ക്ക് രണ്ടു തൊടുവരകൾ വരയ്ക്കാം.
  • വരയ്ക്കുന്ന തൊടുവരകൾ രണ്ടും തുല്യമാണ്.
  • ഒരു വൃത്തത്തിലെ ഒരു ബിന്ദുവിൽകൂടി ഒരു തൊടുവര മാത്രമേ വരയ്ക്കാൻ കഴിയൂ.

ദ്വിമാന തലത്തിൽ y=f (x) എന്ന വക്രത്തിലെ P(x,y) എന്ന ബിന്ദുവിലെ സ്പർശകം X-അക്ഷത്തിന്റെ ധനാത്മകദിശയുമായി ചരിഞ്ഞിരിക്കുന്ന കോണത്തിന്റെ അളവ് θആയാൽ tanθ=f '(x).Tan θ യെ സ്പർശകത്തിന്റെ ചരിവ് (slope) എന്നു പറയുന്നു. ചരിവിനെ കുറിക്കാൻ 'm' എന്ന പ്രതീകമുപയോഗിച്ചാൽ m = f ' (x) എന്നു കിട്ടുന്നു. വക്രത്തിലെ (x1, y1) എന്ന ബിന്ദുവിലുള്ള സ്പർശകത്തിന്റെ സമീകരണമാണ് y - y1 = f ' (x1) (x-x1).

ഉദാഹരണമായി x2 + y2 = a2 എന്ന വൃത്തത്തിലെ (x1, y1) എന്ന ബിന്ദുവിൽ വരയ്ക്കുന്ന സ്പർശകത്തിന്റെ സമീകരണമാണ് xx1 + yy1 = a2. പരാബൊളയുടെ മാനക സമീകരണം y2 = 4ax. ഇതിലെ (x1, y1) എന്ന ബിന്ദുവിലുള്ള സ്പർശകത്തിന്റെ സമീകരണം yy1 = 2a (x + x1) ആണ്.

ഒരു വക്രത്തിലെ P (x,y) എന്ന ബിന്ദുവിലെ സ്പർശകം X അക്ഷത്തെ T എന്ന ബിന്ദുവിൽ പ്രതിച്ഛേദിച്ചാൽ P യും T യും തമ്മിലുള്ള ദൂരത്തെ സ്പർശക ദൂരം (length of the tangent) എന്നു പറയുന്നു.

സ്പർശതലം (tangent plane). ഒരു പ്രതല(surface)ത്തിലുള്ള P എന്ന ബിന്ദുവിൽ ഒരു രേഖ സ്പർശകമാകണമെങ്കിൽ ആ ബിന്ദുവിൽക്കൂടി കടന്നുപോകുന്ന ഒരു വക്രത്തിന് (പ്രതലത്തിലുള്ളത്) ഈ രേഖ സ്പർശകമായിരിക്കണം. p യിൽക്കൂടി കടന്നുപോകുന്ന എല്ലാ സ്പർശകങ്ങളും ഉള്ള സമതലത്തെ സ്പർശതലം എന്നു പറയുന്നു. f (x,y,z) = 0 എന്ന പ്രതലത്തിലെ (x 1,y1,z1) എന്ന ബിന്ദുവിലെ സ്പർശതലത്തിന്റെ സമീകരണമാണ് f1(x1,y1,z1) (x - x1) + f2 (x1,y1,z1) (y - y11) + f3 (x1,y1,z1) (z-z11)=0.

ഇതിൽf1,f2,f3എന്നിവ(x1,y1,z1)ലെ f ന്റെ x,y,z കൊണ്ടുള്ള ആംശിക (partial) അവകലജങ്ങളാണ്. ഉദാഹരണത്തിന് x2 + y2 +z2 = a2 എന്ന ഗോളത്തിന്റെ (x1y1z1) എന്ന ബിന്ദുവിലെ സ്പർശതലമാണ് x x1 + yy1 + zz1 = a2.

ടാൻജെന്റ് ഫലനം (tangent function). സമകോണിക കാർട്ടീഷ്യൻ തലത്തിൽ P(x,y) ഏതെങ്കിലും ബിന്ദുവും ∠ XOP = A യും ആയാൽ അ യുടെ ടാൻജെന്റ് ഫലനം tan A = \frac{ y}{x} എന്ന് എഴുതുന്നു. A-യ്ക്ക് മാറ്റം വരുന്നതനുസരിച്ച് tan A യുടെ വിലയും മാറിക്കൊണ്ടിരിക്കും. ഉദാഹരണത്തിന് tan 0°= 0 ; tan 45° = 1;tan 90°= ∞.ഏതെങ്കിലുമൊരു ത്രികോണം ABC യിൽ കോണങ്ങൾ A, B, C യുടെ എതിർവശങ്ങൾ a,b,c ആയാൽ

tan \frac{B-C}{2} =\frac{b-c}{b+c}Cot\frac{A}{2}

ത്രികോണമിതിയിൽ ഇതിനെ ടാൻജെന്റ് നിയമം (tangent law) എന്നു പറയുന്നു. ലോഗരിതം ഉപയോഗിച്ചുള്ള ത്രികോണനിർധാരണത്തിന് ഈ ഫോർമുലയാണ് ഉപയോഗിക്കുന്നത്.

y = tan x എന്ന ഫലനത്തിന്റെ ആലേഖ(graph)ത്തെ ടാൻജെന്റ് വക്രം (tangent curve) എന്നു പറയുന്നു. ഇതൊരു സന്തത (continous) വക്രമല്ല. മൂലബിന്ദുവിൽക്കൂടി പോകുന്ന വക്രത്തിന്റെ ശാഖ Image:pno72formula2.png ഈ രേഖകൾക്ക് അനന്തസ്പർശരേഖീയ (asymptotic)മാണ്

Heckert GNU white.svg കടപ്പാട്: കേരള സർക്കാർ ഗ്നൂ സ്വതന്ത്ര പ്രസിദ്ധീകരണാനുമതി പ്രകാരം ഓൺലൈനിൽ പ്രസിദ്ധീകരിച്ച മലയാളം സർ‌വ്വവിജ്ഞാനകോശത്തിലെ ടാൻജെന്റ് എന്ന ലേഖനത്തിന്റെ ഉള്ളടക്കം ഈ ലേഖനത്തിൽ ഉപയോഗിക്കുന്നുണ്ട്. വിക്കിപീഡിയയിലേക്ക് പകർത്തിയതിന് ശേഷം പ്രസ്തുത ഉള്ളടക്കത്തിന് സാരമായ മാറ്റങ്ങൾ വന്നിട്ടുണ്ടാകാം.
"https://ml.wikipedia.org/w/index.php?title=തൊടുവര&oldid=2422354" എന്ന താളിൽനിന്നു ശേഖരിച്ചത്