"ന്യൂട്ടന്റെ ചലനനിയമങ്ങൾ" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Jump to navigation Jump to search
69 ബൈറ്റുകൾ കൂട്ടിച്ചേർത്തിരിക്കുന്നു ,  6 വർഷം മുമ്പ്
തിരുത്തലിനു സംഗ്രഹമില്ല
('രണ്ടാം ചലനനിയമം ബലം അളക്കാനുള്ള ഒരു മാർഗം കാ...' താൾ സൃഷ്ടിച്ചിരിക്കുന്നു)
രണ്ടാം ചലനനിയമം ബലം അളക്കാനുള്ള ഒരു മാർഗം കാണിച്ചു തരുന്നു .ഈ നിയമത്തിൽ നിന്നും ബലം കണക്കാക്കാനുള്ള ഒരു സമവാക്യം ലഭിക്കുന്നു .ഈ നിയമത്തിന്റെ ഒന്നാം ഭാഗം അനുസരിച്ച് ഒരു വസ്തു വിനുണ്ടാകുന്ന ആക്ക വ്യത്യസത്തിന്റെ നിരക്ക് അതിൻ മേൽ പ്രയോഗിക്കപ്പെടുന്ന ബലത്തിന് നേർ അനുപാതത്തിലാണ്. ചലിച്ച് കൊണ്ടിരിക്കുന്ന ഒരു വസ്തുവിന്റെ കാര്യം എടുക്കുക.അതിനു ഒരു നിശ്ചിത അളവ് ആക്കം ഉണ്ട് .അതിന്മേൽ ഒരു ബലം അൽപ സമയത്തേക്ക് പ്രവർത്തിക്കുന്നു എന്നിരിക്കട്ടെ .അതിന്റെ പ്രവേഗത്തിന് അപ്പോൾ മാറ്റം വരുന്നു .പ്രവേഗ മാറ്റം ബലത്തെയും ,ബലം പ്രവർത്തിച്ച സമയത്തെയും ആശ്രയിച്ചിരിക്കുന്നു .പ്രവേഗ മാറ്റം സംഭവിച്ചതിനാൽ ആക്കത്തിനും വ്യത്യസമുണ്ടാവുന്നു.എന്നാൽ ഒരു സെക്കന്റിലുണ്ടായ ആക്ക വ്യത്യാസം അഥവാ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് ബലത്തെ അടിസ്ഥാനപ്പെടുത്തി ഇരിക്കുന്നു .ബലം വർധിച്ചതാണെങ്കിൽ ആക്ക വ്യത്യസത്തിന്റെ നിരക്കും വർധിച്ച തോതിലായിരിക്കും.ഇത് തിരിച്ചു പറഞ്ഞാൽ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് വർധിച്ചതണെങ്കിൽ പ്രയോഗിക്കപ്പെട്ട ബലം ഉയർന്നതായിരിക്കും .മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് ഒരു വസ്തുവിൻ മേൽ പ്രയോഗികപ്പെടുന്ന ബലത്തിന് നേർ അനുപാതത്തിലായിരിക്കും .
ഈ നിയമത്തിന്റെ രണ്ടാം ഭാഗത്തിൽ പറയുന്നത് ആക്ക വ്യത്യാസം സംഭവിക്കുന്നത് ബലത്തിന്റെ ദിശയിൽ തന്നെ ആണെന്നാണ് .ഈ കാര്യം താഴെ പറയും പ്രകാരം വ്യക്തമാക്കാം.വസ്തുവിന്റെ ചലനത്തിന്റെ ദിശയിൽ തന്നെയാണ് ബലവും പ്രവർത്തിക്കുന്നത്എങ്കിൽ ആക്ക വ്യത്യാസം പോസിറ്റീവ് ആയിരിക്കും .അതായത് ആക്കം വർധിക്കും .ബലത്തിന്റെ പ്രവർത്തന ദിശ ചലനത്തിന് വിപരീത മാണെങ്കിൽ ആക്ക വ്യതാസം നെഗറ്റീവ് ആയിരിക്കും.അതായത് ആക്കം കുറയുന്നു . ബലം അളക്കാനുള്ള സമവാക്യം<br />
<br />
പ്രവർത്തിക്കുന്നത്എങ്കിൽ ആക്ക വ്യത്യാസം പോസിറ്റീവ് ആയിരിക്കും .അതായത് ആക്കം വർധിക്കും .ബലത്തിന്റെ പ്രവർത്തന ദിശ ചലനത്തിന് വിപരീത മാണെങ്കിൽ ആക്ക വ്യതാസം നെഗറ്റീവ് ആയിരിക്കും.അതായത് ആക്കം കുറയുന്നു . '''ബലം അളക്കാനുള്ള സമവാക്യം'''
 
രണ്ടാം ചലനനിയമത്തിൽ നിന്നും ബലത്തിന്റെ പരിമാണം നിർണ്ണയിക്കുന്നതിന് ഒരു സമവാക്യം ഉണ്ടാക്കാൻ കഴിയും 'm' പിണ്ഡമുള്ള ഒരു വസ്തു 'u' പ്രവേഗത്തോടുകൂടി ചലിക്കുന്നുവെന്നിരിക്കട്ടെ അതിന്റെ ചലന ദിശയിൽ 'F' ബലം അതിന്മേൽ 't' സമയത്തേക്ക് പ്രവർത്തിക്കുമ്പോൾ അതിന്റെ പ്രവേഗം 'v' ആയി മാറി എന്നിരിക്കട്ടെ
വസ്തുവിന്റെ ആദ്യ ആക്കം = mu<br />
 
വസ്തുവിന്റെ അന്ത്യ ആക്കം = mv <br />
ആക്ക വ്യത്യാസം = m(v-u)
 
ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് =( m(v-u))/t
ആക്ക വ്യത്യാസം = m(v-u) <br />
പ്രവേഗ മാറ്റത്തിന്റെ നിരക്ക് ത്വരണമാവുന്നു
 
അതായത് (v-u)/t ത്വരണമാവുന്നു(a).
ആക്കവ്യത്യാസത്തിന്റെ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് =( m*a (v-u))/t<br />
 
പ്രവേഗ മാറ്റത്തിന്റെ നിരക്ക് ത്വരണമാവുന്നു <br />
 
അതായത് (v-u)/t ത്വരണമാവുന്നു(a).<br />
.
ആക്കവ്യത്യാസത്തിന്റെ നിരക്ക് = m*a<br />
രണ്ടാം ചലനനിയമമനുസരിച്ച് ആക്കവ്യത്യാസത്തിന്റെ നിരക്ക് പ്രയോഗിക്കപ്പെട്ട ബലത്തിന് ആനുപാതികമാണ് . F =k*m*a എന്നു കണക്കാക്കാം . ഇവിടെ k എന്നത്ഒരു സ്ഥിരാംഗമാണ് . അതിന്റെ മൂല്യം 1 ആണ്. അതു കൊണ്ട് ന്യൂട്ടന്റെ രണ്ടാം ചലന സമവാക്യം നമുക്ക്F =m*aഎന്ന് അനുമാനിക്കാം.
19

തിരുത്തലുകൾ

"https://ml.wikipedia.org/wiki/പ്രത്യേകം:മൊബൈൽവ്യത്യാസം/1848063" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്

ഗമന വഴികാട്ടി