ഓപ്പറേഷണൽ ആംപ്ലിഫയർ

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
പല ഓപാംബ് ഐ.സി കൾ 8 പിൻ ഡി.ഐ.പി ("DIP")

ആം‌പ്ലിഫയർ സർക്യൂട്ട് ഉൾപ്പെടുന്ന മിക്ക ഇലക്ട്രോണിക്സ് സർക്യൂട്ടുകളുടെയും പ്രധാനപ്പെട്ട ഭാഗമാണ്[അവലംബം ആവശ്യമാണ്] ഓപാംബ് (op-amp) എന്ന പേരിൽ അറിയപ്പെടുന്ന ഓപറേഷണൽ ആംബ്ലിഫയർ . ഇവ കൂടുതലായും ഇൻറഗ്രേറ്റഡ് സർക്യൂട്ട് (IC) രൂപത്തിലാണ് ഉപയോഗിക്കുന്നത്.

ഓപറേഷണൽ ആം‌പ്ലിഫയർ ഡിഫറൻഷ്യൽ ഇൻപുട്ടോടു കൂടിയതും, പൊതുവെ ഒരു ഔട്ട്പുട്ട് ഉള്ളതും, നേർധാരാ വൈദ്യുതിയിൽ പ്രവർത്തിക്കുന്നതും, ഡയറക്ട് കപ്പിളിങ്ങ് മൂലം ബന്ധിപ്പിക്കാവുന്നതുമായ ഇലക്ട്രോണിക്ക് വോൾട്ടേജ് ആം‌പ്ലിഫയർ ആണ്. [1] ഇൻപുട്ട് ടെർമിനലുകളിലെ വോൾട്ടതയിലുള്ള വ്യത്യാസത്തിന്റെ നൂറോ ആയിരമോ മടങ്ങ് വർദ്ധിപ്പിക്കുവാൻ ഇവയ്ക്ക് കഴിയും. [2]

ഇവയുടെ വിശേഷ ഫലം (ഔട്ട് പുട്ട്) (പ്രവർധനം (gain) പോലെയുള്ളവ) ഇൻറഗ്രേറ്റഡ് സർക്യൂട്ടിനു വെളിയിലുള്ള ഘടകങ്ങളുമായി (പ്രതിരോധകങ്ങൾ,കപ്പാസിറ്ററുകൾ മുതലായവ) നേരിട്ടു ബന്ധപ്പെട്ടിരിക്കുന്നു. അവയുടെ നിർമാണ രീതിയും, താപനിലയും (പ്രവർത്തന താപനില) ഈ സവിശേഷ ഫലങ്ങളെ ചെറിയതോതിൽ സ്വാധീനിക്കുന്നുണ്ട്.

സർക്യൂട്ട് പ്രതീകങ്ങൾ[തിരുത്തുക]

ഓപ്പാബിന്റെ സർക്യൂട്ട് പ്രതീകമായ ചിത്രം

സർക്യൂട്ട് പ്രതീകമായ ചിത്രം വൽതുവശത്ത് കാണിച്ചിരിക്കുന്നു, ഇവിടെ:

  • V_{\!+}: നോൺ-ഇൻ‌വേർട്ടിങ്ങ് ഇൻപുട്ട്
  • V_{\!-}: ഇൻ‌വേർട്ടിങ്ങ് ഇൻപുട്ട്
  • V_{\!\text{out}}: ഔട്ട് പുട്ട്
  • V_{\text{S}\!+}: പോസിറ്റീവ് പവ്വർ സപ്ലെ
  • V_{\text{S}\!-}: നെഗറ്റീവ് പവ്വർ സപ്ലെ

പവ്വർ സപ്ലെ പിന്നുകൾ (V_{\text{S}\!+} ഉം V_{\text{S}\!-} ഉം) മറ്റ് പല രീതിയിലുള്ള സൂചകങ്ങൾ ഉപയോഗിച്ചു വരുന്നു. എന്നിരുന്നാലും സിഗ്നലുകളുടെ ആമ്പ്ലിഫിക്കേഷനു വേണ്ടി വരുന്ന അധിക പവ്വർ നൽകുക എന്ന ധർമം ഒന്നുതന്നെയാണ്. മിക്കപ്പോഴും ഇവയെ ഒഴിവാക്കിയാണ് സർക്യൂട്ട് ചിത്രങ്ങളിൽ ഇവ നൽകാറുള്ളത്. മറ്റൊരു സൂചക ഉപയോഗരീതി ഇങ്ങനെ (+V_\text{CC}\,\! ഉം -V_\text{EE}\,\! ഉം) [3]

പ്രവർത്തനം[തിരുത്തുക]

ആം‌പ്ലിഫയറിന്റെ ഇൻപുട്ട് V_{\!+} എന്നതും V_{\!-} എന്നതുമായ രണ്ട് ടെർമിനലുകൾ ചേർന്നതാണ്. എന്നാൽ ഔട്ട്പുട്ട് ഈ ടെർമിനലുകളിലെ വോൾട്ടതയിലെ വ്യത്യാസത്തെ മാത്രമേ ആം‌പ്ലിഫൈ ചെയ്യുന്നുള്ളൂ. ഈ വോൾട്ടതയെ “ഡിഫറൻഷ്യൽ ഇൻപുട്ട് വോൾട്ടത“ എന്നു പറയുന്നു. ഔട്ട്പുട്ടിലെ വോൾട്ടതയെ കണക്കാക്കാൻ താഴെപ്പറയുന്ന സമവാക്യം ഉപയോഗിക്കാം.

V_{\!\text{out}} = (V_{\!+} - V_{\!-}) \, A_{OL}

ഇവിടെ V_{\!+} എന്നത് നോൺ ഇൻ‌വേർട്ടിങ്ങ് ടെർമിനലിലെ വോൾട്ടതയും, V_{\!-} എന്നത് ഇൻ‌വേർട്ടിങ്ങ് ടെർമിനലിലെ വോൾട്ടതയും A_{OL} എന്നത് ആം‌പ്ലിഫയറിന്റെ ഓപൺ ലൂപ്പ് ഗെയിനും ആണ്. ("ഓപൺ-ലൂപ്പ്" എന്നത് ഔട്ട്പുട്ടിൽ നിന്നും ഇൻപുട്ടിലേക്ക് ഫീഡ്ബാക്ക് ലൂപ്പ് ഇല്ല എന്നതിനെ സൂചിപ്പിക്കുന്നു. ഉണ്ടെങ്കിൽ അതിനെ “ക്ലോസ്ഡ് ലൂപ്പ്“ എന്നു പറയുന്നു)

ചരിത്രം[തിരുത്തുക]

1942: ആദ്യത്തെ ഓപ്പാമ്പ് (വാക്വം ട്യൂബ്)[തിരുത്തുക]

പൊതുപ്രവർത്തനവും, നേർധാരാ ഡയറക്ട് കപ്പിളിങ്ങ് മൂലം ബന്ധിപ്പിക്കാവുന്നതും ഉയർന്ന ഗെയിൻ ഉള്ളതും ഇൻ‌വെർട്ടിങ്ങ് ഫീഡ്ബാക്കോടു കൂടിയതുമായ ആദ്യത്തെ ആം‌പ്ലിഫയർ യു.എസ്. പേറ്റന്റ് 2 ൽ ‘‘സമ്മിങ്ങ് ആം‌പ്ലിഫയർ‘‘ ("Summing Amplifier") എന്നത് കേൾ.ഡി സ്വാർഡ്സെൽ ജൂ. (Karl D. Swartzel Jr). എന്ന ആൾ ബെൽ ലാബ്സിൽ (Bell labs) നിന്നും1941 ൽ സമർപ്പിച്ചതാണ്. ഈ രൂപകല്പന 90 dB ഗെയിൻ നേടുന്നതിനായി മൂന്ന് വാക്വം ട്യൂബ് ഉപയോഗിച്ച് ഉള്ളതായിരുന്നു, ഇത് പ്രവർത്തിച്ചിരുന്നത് ±350 V ആണ്. ഇപ്പോഴുള്ള ഓപ്പാമ്പുകളിൽ ഉള്ള രണ്ട് ഇൻപുട്ടിൽ നിന്നും വ്യത്യസ്തമായി ഒരു ഇൻ‌വെർട്ടിങ്ങ് ഇൻപുട്ട് ആണ് ഉള്ളത്. രണ്ടാം ലോകമഹായുദ്ധക്കാലത്ത് ഈ അഭികല്പനയുടെ ഉപയോഗം M9 (സൈനീകം) എന്ന ഡയറക്ടറിൽ ഉപയോഗിച്ചു ബെൽ ലാബ്സ് ആയിരുന്നു ഇതിന്റെ രൂപകർത്താക്കൾ. SCR584 റഡാറിൽ ഇതുപയോഗിച്ചതുമൂലം കൂടിയ തോതിലുള്ള പ്രവർത്തനശേഷി ലഭിക്കുകയുണ്ടായി (90% ത്തോടടുത്ത്), ഈ കണ്ടുപിടുത്തമില്ലങ്കിൽ ഇതസാധ്യമായിരുന്നു.[4]

1947: സ്പഷ്ടമായ നോൺ ഇൻ‌വേർട്ടിങ്ങ് ഇൻപുട്ടോടു കൂടിയ ആദ്യത്തെ ഓപാം‌മ്പ്[തിരുത്തുക]

GAP/R's K2-W: വാക്വം ട്യൂബ് ഓപാം‌മ്പ് (1953)

1947- ൽ കൊളബിയ സർവകലാശാലയിലെ പ്രൊഫസർ ജോൺ ആർ. റാഗാസ്സിനി (Professor John R. Ragazzini) ആണ് ഔപചാരികമായി ഓപറേഷണൽ ആം‌പ്ലിഫയറിനെ എഴുതി നിർവചിച്ചതും നാമകരണം ചെയ്തതും. ഒരു വിദ്യാർഥിയാണ് ഇതു വികസിപ്പിച്ചതെന്നും അദ്ദേഹം ഇതിൽ പരാർശിക്കുന്നുണ്ട്. പലവിധത്തിലും മികച്ചതായ ഈ ഓപാം‌മ്പ് രൂപകല്പന ചെയ്തത് ലോബീ ജൂലി (Loebe Julie) ആണ്. ഇതിൽ രണ്ട് നവരീതികൾ ഉണ്ടായിരുന്നു, ഇൻപുട്ടിൽ നീളമുള്ള ട്രയോഡുകളുടെ ജോഡി ഉപയോഗിച്ചു, ഇത് ഔട്ട്പുട്ടിലുണ്ടാകുന്ന ഡ്രിഫ്റ്റ് ഒഴിവാക്കാൻ സഹായകമായി മറ്റൊരു വിശേഷത ഇതിനു രണ്ട് ഇൻപുട്ട് (നോൺ ഇൻ‌വേർട്ടിങ്ങ്, ഇൻ‌വേർട്ടിങ്ങ്, ഇൻപുട്ടുകൾ) ഉണ്ടായിരുന്നു എന്നതാണ്. ചോപ്പർ സ്റ്റെബിലൈസ്ഡ് ആം‌പ്ലിഫയറിന്റെ (chopper-stabilized amplifier) ആവിർഭാവം ഇതിനെ അധികനാൾ ഉപയോഗത്തിലിരിക്കുവാൻ അനുവദിച്ചില്ല.[5]

1949: ആദ്യ ചോപ്പർ-സ്റ്റെബിലൈസ്ഡ് ഓപാം‌മ്പ്[തിരുത്തുക]

1949 - ൽ എഡ്വിൻ എ ഗോൾഡ്ബെർഗ് (Edwin A. Goldberg) ചോപ്പർ-സ്റ്റെബിലൈസ്ഡ് ഓപാം‌മ്പിനു രൂപകല്പന നൽകിയത്.[6] ഈ ഓപാം‌മ്പിൽ സാധാരണ ഓപാം‌മ്പിനെ കൂടാതെ ഒരു പ്രത്യാവർത്തിധാരാ വൈദ്യുതിയിൽ പ്രവർത്തിക്കുന്ന മറ്റൊരു ആം‌പ്ലിഫയർ കൂടി ഉണ്ട്. ചോപ്പർ നേർധാരാ വൈദ്യുതിയിലേക്കും ഗ്രൗണ്ടിലേക്കും പ്രെത്യേക ആവൃത്തിയിൽ (60 Hz or 400 Hz) മാറുമ്പോൾ പ്രത്യാവർത്തിധാരാ വൈദ്യുതി ഉണ്ടാകുന്നു. ഈ സിഗ്നലുകൾ ആം‌പ്ലിഫിക്കേഷനും, റെക്ടിഫിക്കേഷനും, ഫിൽറ്ററിങ്ങിനും വിധേയമാക്കിയ ശേഷം ഓപാം‌ബിന്റെ നോൺ ഇൻ‌വേർട്ടിങ്ങ് ഇൻപുട്ടിലേക്ക് വിടുന്നു. ഈ സംവിധാനം ഗെയിൻ വളരെ അധികം വർദ്ധിപ്പിക്കുവാൻ സഹായകമായി മാത്രമല്ല ഔട്ട്പുട്ടിലെ ഡ്രിഫ്റ്റും ഡി.സി ഓഫ്സെറ്റും കുറച്ചു. പക്ഷേ നോൺ ഇൻ‌വേർട്ടിങ്ങ് ഇൻപുട്ട് മറ്റൊന്നിനും ഉപയോഗിക്കാൻ കഴിയില്ല എന്നുള്ളത് ഇതിന്റെ ഒരു കുറവായിരുന്നു.

1953 - ൽ ജോർജ്ജ് എ ഫിൽബ്രിക്ക് ഇൻ‌കോർപറേറ്റഡ് (George A. Philbrick) പുതിയ രൂപമായ K2-W പുറത്തിറക്കിയതോടെ വാക്വം ട്യൂബ് ഓപാം‌മ്പ് വളരെ കൂടുതൽ ഉപയോഗത്തിൽ വന്നു. ഇതിൽ കാണിച്ചിരിക്കുന്ന GAP/R എന്നത് കമ്പനിയുടെ മുഴുവൻ ചുരുക്കപ്പേരാണ്‌. നോൺ ഇൻ‌വേർട്ടിങ്ങ് പിന്നുകളുടെ ഉപയോഗം കൂടുതലാകുകയും പുതിയരീതിയിലുള്ള ഓപാം‌മ്പ് ഉപയോഗത്തിൽ വന്നതും, ഇവയുടെ ഉപയോഗം കുറച്ചു

ഉപയോഗങ്ങൾ[തിരുത്തുക]

നോൺ ഇൻ‌വേർട്ടിങ്ങ് ആം‌പ്ലിഫയർ[തിരുത്തുക]

ഓപാം‌ബ് നോൺ ഇൻ‌വേർട്ടിങ്ങ് ആം‌പ്ലിഫയറായി ഉപയോഗിച്ചിരിക്കുന്നു

ഒരു നോൺ ഇൻ‌വേർട്ടിങ്ങ് ആം‌പ്ലിഫയറിൽ, ഇൻപുട്ട് വോൾട്ടതയുടെ അതേ ദിശയിൽ ഔട്ട്പുട്ട് വോൾട്ടതയും മാറുന്നു.“

ഓപാം‌മ്പിന്റെ ഗെയിൻ സമവാക്യം:

V_{\text{out}} = (V_{\!+} - V_{\!-}) \, A_{OL}

പക്ഷേ ഈ സർക്കീട്ടിൽ V എന്നത് V_{\text{out}} മായി ബന്ധപ്പെട്ടിരിക്കുന്നു ഇതിനുകാരണം R_{\text{1}} R_{\text{2}} ലൂടെയുള്ള നെഗറ്റീവ് ഫീഡ്ബാക്ക് നെറ്റ്വർക്കാണ്. R_{\text{1}} ഉം R_{\text{2}} ഉം വോൾട്ടേജ് ഡിവൈഡർ സർക്കീ‍ട്ടിന്റെ ഭാഗമായി വരുന്നു, അപ്പോൾ V എന്നത് കൂടിയ പ്രതിരോധമുള്ളതായി മാറുന്നു.

അപ്പോൾ

V_{\!-} \,\, = \beta \cdot V_{\text{out}}

ഇവിടെ

\beta = \frac{R_1}{R_1+R_2}

ഈ ഫലം ഗെയിൻ സമവാക്യത്തിൽ പകരം ചേർക്കുമ്പോൾ,

V_{\text{out}} = (V_{\text{in}} - \beta \cdot V_{\text{out}}) \cdot A_{OL}

നമുക്ക് ലഭിക്കുന്നു.

V_{\text{out}} വേണ്ടി പരിഹരിക്കുമ്പോൾ:

V_{\text{out}} = V_{\text{in}} \cdot ( \frac{1}{\beta + 1/A_{OL}})

പക്ഷേ A_{OL} വളരെ വലുതാകുമ്പോൾ,


V_{\text{out}} 
\approx \frac{V_{\text{in}}}{\beta} 
= \frac{V_{\text{in}}}{\frac{R_{\text{1}}}{R_{\text{1}}+R_{\text{2}}}}
= V_{\text{in}} (1 + \frac{R_2}{R_1})
.

ഇൻ‌വേർട്ടിങ്ങ് ആം‌പ്ലിഫയർ[തിരുത്തുക]

ഓപാം‌ബ് ഇൻ‌വേർട്ടിങ്ങ് ആം‌പ്ലിഫയറായി ഉപയോഗിച്ചിരിക്കുന്നു

ഒരു ഇൻ‌വേർട്ടിങ്ങ് ആം‌പ്ലിഫയറിൽ, ഇൻപുട്ട് വോൾട്ടതയുടെ വിപരീത ദിശയിൽ ഔട്ട്പുട്ട് വോൾട്ടതയും മാറുന്നു.

ഓപാം‌മ്പിന്റെ ഗെയിൻ സമവാക്യം:

V_{\text{out}} = (V_{\!+} - V_{\!-}) \, A_{OL}

ഇവിടെ, V എന്നത് V_{\text{out}} നെയും V_{\text{in}} നെയും ആശ്രയിച്ചിരിക്കുന്നു.വോൾട്ടേജ് ഡിവൈഡർ സർക്കീ‍ട്ടിന്റെ ഭാഗമായി വരുന്ന R_{\text{f}} ഉം R_{\text{in}} ഇതിനു കാരണമാകുന്നു.

അതിനാൽ

V_{\!-} \,\, = \frac{1}{R_{\text{f}} + R_{\text{in}}} \big( R_\text{f} V_{\text{in}} + R_{\text{in}} V_{\text{out}} \big)

ഈ ഫലം ഗെയിൻ സമവാക്യത്തിൽ പകരം ചേർക്കുകയും, V_{\text{out}} നു വേണ്ടി പരിഹരിക്കുകയും ചെയ്യുമ്പോൾ:

V_{\text{out}} = - V_{\text{in}} \cdot \frac {A_{OL} R_{\text{f}}}{R_{\text{f}} + R_{\text{in}} + A_{OL} R_{\text{in}}}

പക്ഷേ A_{OL}വളരെ വലുതാകുമ്പോൾ


V_{\text{out}} 
\approx - V_{\text{in}} \frac{R_{\text{f}}}{R_{\text{in}}}
.

മറ്റ് ഉപയോഗങ്ങൾ[തിരുത്തുക]

ഓപ്പാമ്പ് 741-ന്റെ പിൻ ഔട്ട്
  • ഓഡിയോ വീഡിയോ ആവൃത്തി വർദ്ധിപ്പിക്കുവാനും, ബഫറുകളിൽ
  • വോൾട്ടേജ് കമ്പാരറ്റർ
  • ഡിഫറൻഷ്യൽ ആം‌പ്ലിഫയർ
  • ഡിഫറൻഷ്യേറ്ററായും ഇന്റഗ്രേറ്ററായും
  • ഫിൽറ്ററുകളായി
  • അനലോഗ് കാൽക്കുലേറ്റർ

അവലംബം[തിരുത്തുക]

  1. MAXIM Application Note 1108: Understanding Single-Ended, Pseudo-Differential and Fully-Differential ADC Inputs — Retrieved November 10, 2007
  2. http://www.analog.com/static/imported-files/tutorials/MT-044.pdf Analog devices MT-044 TUTORIAL]
  3. യു എ‍, ബക്ഷി; എ പി ഗോഡ്സെ (ഒക്ടോബർ 2006). Linear Integrated Circuits. ടെക്നിക്കൽ പബ്ലിക്കേഷൻ. ഐ.എസ്.ബി.എൻ. 81-8431-091-9.  തീയതിയ്ക്ക് നൽകിയ വില പരിശോധിക്കുക: |date= (സഹായം)
  4. Jung, Walter G. (2004). "Chapter 8: Op Amp History". Op Amp Applications Handbook. Newnes. p. 777. ഐ.എസ്.ബി.എൻ. 9780750678445. ശേഖരിച്ചത് 2008-11-15. 
  5. Jung, Walter G. (2004). "Chapter 8: Op Amp History". Op Amp Applications Handbook. Newnes. p. 779. ഐ.എസ്.ബി.എൻ. 9780750678445. ശേഖരിച്ചത് 2008-11-15. 
  6. http://www.analog.com/library/analogDialogue/archives/39-05/Web_ChH_final.pdf

പുറത്തേക്കുള്ള കണ്ണികൾ[തിരുത്തുക]

ഓപ്പറേഷണൽ ആം‌പ്ലിഫയർ (ഇംഗ്ലീഷ്)

"http://ml.wikipedia.org/w/index.php?title=ഓപ്പറേഷണൽ_ആംപ്ലിഫയർ&oldid=1691884" എന്ന താളിൽനിന്നു ശേഖരിച്ചത്