"ധാതു" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
Content deleted Content added
(ചെ.) യന്ത്രം ചേര്‍ക്കുന്നു: be-x-old:Мінэрал
(ചെ.) പുതിയ ചിൽ ...
വരി 1: വരി 1:
{{prettyurl|Mineral}}
{{prettyurl|Mineral}}
{{ToDisambig|വാക്ക്=ധാതു}}
{{ToDisambig|വാക്ക്=ധാതു}}
അകാര്‍ബണിക (inorganic) പ്രക്രിയയുടെ ഫലമായി രൂപംകൊള്ളുന്നതും നിയതമായ അറ്റോമിക ഘടന, രാസസംഘടനം, സ്ഥിരം അഥവാ ഒരു നിശ്ചിത പരിധിവരെ വ്യത്യാസപ്പെടാവുന്ന ഭൗതികഗുണം എന്നിവയോടുകൂടിയതുമായ പ്രാകൃതിക പദാര്‍ഥമാണു് '''ധാതു''' (mineral) എന്നറിയപ്പെടുന്നതു് . '''ഖനിജം''' എന്നും ഇത് അറിയപ്പെടുന്നു. ഒരൊറ്റ മൂലകമായോ (ഉദാ. ചെമ്പ്, സ്വര്‍ണം, വെള്ളി) സംയുക്തങ്ങളായോ (ഉദാ. സോഡിയം ക്ലോറൈഡ് (NaCl), കാല്‍സ്യം കാര്‍ബണേറ്റ് (CaCO3)) ധാതുക്കള്‍ പ്രകൃതിയില്‍ കാണപ്പെടുന്നു. ഭുവല്കത്തില്‍ മാത്രമല്ല ചന്ദ്രന്‍, ചൊവ്വ, ഉല്‍ക്കകള്‍ തുടങ്ങിയ ജ്യോതിര്‍വസ്തുക്കളിലും ധാതുക്കള്‍ കാണപ്പെടുന്നുണ്ട്. അജൈവ സ്വഭാവമാണ് ധാതുക്കളുടെ മുഖ്യ സവിശേഷത.
അകാർബണിക (inorganic) പ്രക്രിയയുടെ ഫലമായി രൂപംകൊള്ളുന്നതും നിയതമായ അറ്റോമിക ഘടന, രാസസംഘടനം, സ്ഥിരം അഥവാ ഒരു നിശ്ചിത പരിധിവരെ വ്യത്യാസപ്പെടാവുന്ന ഭൗതികഗുണം എന്നിവയോടുകൂടിയതുമായ പ്രാകൃതിക പദാർഥമാണു് '''ധാതു''' (mineral) എന്നറിയപ്പെടുന്നതു് . '''ഖനിജം''' എന്നും ഇത് അറിയപ്പെടുന്നു. ഒരൊറ്റ മൂലകമായോ (ഉദാ. ചെമ്പ്, സ്വർണം, വെള്ളി) സംയുക്തങ്ങളായോ (ഉദാ. സോഡിയം ക്ലോറൈഡ് (NaCl), കാൽസ്യം കാർബണേറ്റ് (CaCO3)) ധാതുക്കൾ പ്രകൃതിയിൽ കാണപ്പെടുന്നു. ഭുവല്കത്തിൽ മാത്രമല്ല ചന്ദ്രൻ, ചൊവ്വ, ഉൽക്കകൾ തുടങ്ങിയ ജ്യോതിർവസ്തുക്കളിലും ധാതുക്കൾ കാണപ്പെടുന്നുണ്ട്. അജൈവ സ്വഭാവമാണ് ധാതുക്കളുടെ മുഖ്യ സവിശേഷത.


ധാതുക്കളുടെ പരമ്പരാഗതനിര്‍വചനപ്രകാരം പ്രകൃത്യാ കാണപ്പെടുന്ന അകാര്‍ബണിക പദാര്‍ഥങ്ങളെ മാത്രമേ ഇതില്‍ ഉള്‍പ്പെടുത്തിയിട്ടുള്ളൂ. എന്നാല്‍ ഇപ്പോള്‍ കാര്‍ബണിക പദാര്‍ഥങ്ങളായ കല്‍ക്കരി, പ്രകൃതിവാതകം, പെട്രോളിയം എന്നിവയെ പരിമിതാര്‍ഥത്തില്‍ ധാതുക്കളായി പരിഗണിക്കാറുണ്ട്. രൂപസാദൃശ്യങ്ങളിലും മറ്റും ധാതുക്കളോടു സാമ്യമുണ്ടെങ്കിലും മനുഷ്യ നിര്‍മിത പദാര്‍ഥങ്ങളെ (ഉദാ. കൃത്രിമ വജ്രം) ഒരിക്കലും ധാതുക്കളുടെ പട്ടികയില്‍ ഉള്‍പ്പെടുത്താറില്ല. അഗ്നിപര്‍വതജന്യ സ്ഫടികം, പവിഴം, ജന്തുക്കളുടെ അസ്ഥികള്‍, തോടുകള്‍ എന്നിവയും ധാതുക്കളുടെ നിര്‍വചന പരിധിയില്‍ ഉള്‍പ്പെടുന്നില്ല. ധാതുക്കള്‍ പൊതുവേ വാതകം, ശിലാദ്രവം, ജലീയദ്രാവകം, മറ്റു ധാതുക്കള്‍ എന്നിവയില്‍നിന്ന് രൂപപ്പെടുന്നവയാണ്.
ധാതുക്കളുടെ പരമ്പരാഗതനിർവചനപ്രകാരം പ്രകൃത്യാ കാണപ്പെടുന്ന അകാർബണിക പദാർഥങ്ങളെ മാത്രമേ ഇതിൽ ഉൾപ്പെടുത്തിയിട്ടുള്ളൂ. എന്നാൽ ഇപ്പോൾ കാർബണിക പദാർഥങ്ങളായ കൽക്കരി, പ്രകൃതിവാതകം, പെട്രോളിയം എന്നിവയെ പരിമിതാർഥത്തിൽ ധാതുക്കളായി പരിഗണിക്കാറുണ്ട്. രൂപസാദൃശ്യങ്ങളിലും മറ്റും ധാതുക്കളോടു സാമ്യമുണ്ടെങ്കിലും മനുഷ്യ നിർമിത പദാർഥങ്ങളെ (ഉദാ. കൃത്രിമ വജ്രം) ഒരിക്കലും ധാതുക്കളുടെ പട്ടികയിൽ ഉൾപ്പെടുത്താറില്ല. അഗ്നിപർവതജന്യ സ്ഫടികം, പവിഴം, ജന്തുക്കളുടെ അസ്ഥികൾ, തോടുകൾ എന്നിവയും ധാതുക്കളുടെ നിർവചന പരിധിയിൽ ഉൾപ്പെടുന്നില്ല. ധാതുക്കൾ പൊതുവേ വാതകം, ശിലാദ്രവം, ജലീയദ്രാവകം, മറ്റു ധാതുക്കൾ എന്നിവയിൽനിന്ന് രൂപപ്പെടുന്നവയാണ്.


== രൂപവും ഘടനയും ==
== രൂപവും ഘടനയും ==
സ്വതന്ത്രമായി രൂപംകൊള്ളുന്ന ധാതുക്കളുടെ പ്രത്യേകതയാണ് അവയുടെ ക്രിസ്റ്റല്‍ മുഖങ്ങള്‍. 18-19 ശ.-ങ്ങളില്‍ നടന്ന ധാതുക്കളുടെ ക്രിസ്റ്റല്‍ രൂപങ്ങളെ സംബന്ധിച്ച പഠനങ്ങള്‍ ധാതുവിജ്ഞാനീയത്തിന്റെ വളര്‍ച്ചയ്ക്ക് നിര്‍ണായകമായ സംഭാവനകള്‍ നല്കി. തുടര്‍ന്ന് ഓരോ ധാതുവിനും നിശ്ചിത മുഖാന്തര്‍ കോണുകള്‍ (interfacial angle) ആണ് ഉള്ളതെന്ന വസ്തുതയും സ്ഥിരീകരിക്കപ്പെട്ടു. 1830-കളില്‍ ക്രിസ്റ്റല്‍ മുഖങ്ങള്‍ക്കിടയിലെ പ്രതിസമതാ ബന്ധങ്ങളുടെ (Symmetry relationship) അടിസ്ഥാനത്തില്‍ ക്രിസ്റ്റലുകളെ 32 ഗണങ്ങളും ഐസൊമെട്രിക്, മൊണോക്ളിനിക്, ട്രൈക്ളിനിക്, ഒര്‍തോറോംബിക്, ട്രൈഗണല്‍, ഹെക്സഗണല്‍, ടെട്രഗണല്‍ എന്നിങ്ങനെ ഏഴ് ക്രിസ്റ്റല്‍ വ്യൂഹങ്ങളും ആയി വിഭജിച്ചു.
സ്വതന്ത്രമായി രൂപംകൊള്ളുന്ന ധാതുക്കളുടെ പ്രത്യേകതയാണ് അവയുടെ ക്രിസ്റ്റൽ മുഖങ്ങൾ. 18-19 ശ.-ങ്ങളിൽ നടന്ന ധാതുക്കളുടെ ക്രിസ്റ്റൽ രൂപങ്ങളെ സംബന്ധിച്ച പഠനങ്ങൾ ധാതുവിജ്ഞാനീയത്തിന്റെ വളർച്ചയ്ക്ക് നിർണായകമായ സംഭാവനകൾ നല്കി. തുടർന്ന് ഓരോ ധാതുവിനും നിശ്ചിത മുഖാന്തർ കോണുകൾ (interfacial angle) ആണ് ഉള്ളതെന്ന വസ്തുതയും സ്ഥിരീകരിക്കപ്പെട്ടു. 1830-കളിൽ ക്രിസ്റ്റൽ മുഖങ്ങൾക്കിടയിലെ പ്രതിസമതാ ബന്ധങ്ങളുടെ (Symmetry relationship) അടിസ്ഥാനത്തിൽ ക്രിസ്റ്റലുകളെ 32 ഗണങ്ങളും ഐസൊമെട്രിക്, മൊണോക്ളിനിക്, ട്രൈക്ളിനിക്, ഒർതോറോംബിക്, ട്രൈഗണൽ, ഹെക്സഗണൽ, ടെട്രഗണൽ എന്നിങ്ങനെ ഏഴ് ക്രിസ്റ്റൽ വ്യൂഹങ്ങളും ആയി വിഭജിച്ചു.


== രാസസംഘടനം (Chemical composition) ==
== രാസസംഘടനം (Chemical composition) ==
വ്യക്തമായ സൂത്രസംജ്ഞയാല്‍ (formula) സൂചിപ്പിക്കാന്‍ കഴിയുന്ന നിയതമായ രാസസംഘടനമാണ് ധാതുക്കളുടെ മുഖ്യ സവിശേഷത. ധാതുക്കളുടെ രാസ സംയോഗത്തിലെ ഘടകമൂലകങ്ങളുടെ എണ്ണത്തിനും അനുപാതത്തിനും അനുസൃതമായി സൂത്രസംജ്ഞകള്‍ ലഘുവോ സങ്കീര്‍ണമോ ആകുന്നു. ധാതുവിന്റെ രാസസംഘടനം നിയതമെങ്കിലും സ്ഥിരമാകണമെന്നില്ല. മൂലകങ്ങളുടെ ആദേശമാണ് ഇതിന് നിദാനം. മാഗ്നസൈറ്റില്‍ മഗ്നീഷ്യത്തിനുപകരം ഇരുമ്പും, സിഡെറൈറ്റില്‍ ഇരുമ്പിനു പകരം മഗ്നീഷ്യവും കാണപ്പെടുന്നത് ഇത്തരം ആദേശ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്.
വ്യക്തമായ സൂത്രസംജ്ഞയാൽ (formula) സൂചിപ്പിക്കാൻ കഴിയുന്ന നിയതമായ രാസസംഘടനമാണ് ധാതുക്കളുടെ മുഖ്യ സവിശേഷത. ധാതുക്കളുടെ രാസ സംയോഗത്തിലെ ഘടകമൂലകങ്ങളുടെ എണ്ണത്തിനും അനുപാതത്തിനും അനുസൃതമായി സൂത്രസംജ്ഞകൾ ലഘുവോ സങ്കീർണമോ ആകുന്നു. ധാതുവിന്റെ രാസസംഘടനം നിയതമെങ്കിലും സ്ഥിരമാകണമെന്നില്ല. മൂലകങ്ങളുടെ ആദേശമാണ് ഇതിന് നിദാനം. മാഗ്നസൈറ്റിൽ മഗ്നീഷ്യത്തിനുപകരം ഇരുമ്പും, സിഡെറൈറ്റിൽ ഇരുമ്പിനു പകരം മഗ്നീഷ്യവും കാണപ്പെടുന്നത് ഇത്തരം ആദേശ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്.
== നാമകരണം ==
== നാമകരണം ==
പല ധാതുക്കളും പ്രാചീനമായ പേരുകളിലാണ് അറിയപ്പെടുന്നത്. എ.ഡി. 1-ാം ശ.-ത്തില്‍ ധാതുവിജ്ഞാനീയത്തിന് അമൂല്യമായ സംഭാവനകള്‍ നല്കിയ റോമന്‍ പ്രകൃതി ശാസ്ത്രജ്ഞനായ പ്ളിനി നിരവധി പ്രാകൃതിക മൂലകങ്ങളുടെയും അയിരുധാതുക്കളുടെയും രത്നങ്ങളുടെയും ഒരു പ്രാഥമിക പട്ടിക തയ്യാറാക്കി പ്രസിദ്ധപ്പെടുത്തിയിരുന്നു. 18-ാം ശ.-ത്തിന്റെ അവസാനത്തോടെ ഓരോ ധാതുവര്‍ഗത്തിനും പ്രത്യേകം പേര് നല്കുന്ന സമ്പ്രദായം നിലവില്‍വന്നു.
പല ധാതുക്കളും പ്രാചീനമായ പേരുകളിലാണ് അറിയപ്പെടുന്നത്. എ.ഡി. 1-ാം ശ.-ത്തിൽ ധാതുവിജ്ഞാനീയത്തിന് അമൂല്യമായ സംഭാവനകൾ നല്കിയ റോമൻ പ്രകൃതി ശാസ്ത്രജ്ഞനായ പ്ളിനി നിരവധി പ്രാകൃതിക മൂലകങ്ങളുടെയും അയിരുധാതുക്കളുടെയും രത്നങ്ങളുടെയും ഒരു പ്രാഥമിക പട്ടിക തയ്യാറാക്കി പ്രസിദ്ധപ്പെടുത്തിയിരുന്നു. 18-ാം ശ.-ത്തിന്റെ അവസാനത്തോടെ ഓരോ ധാതുവർഗത്തിനും പ്രത്യേകം പേര് നല്കുന്ന സമ്പ്രദായം നിലവിൽവന്നു.


മിക്ക ധാതുക്കള്‍ക്കും അവ കണ്ടെത്തിയവരാണ് പേരുകള്‍ നല്കിയിട്ടുള്ളത്. ധാതുവിന്റെ നിറം, ക്രിസ്റ്റല്‍ ഘടന, ആപേക്ഷിക ഘനത്വം എന്നിവയെ സൂചിപ്പിക്കുന്ന ഗ്രീക്ക് അഥവാ ലാറ്റിന്‍ പദങ്ങളില്‍നിന്നാണ് മിക്ക ധാതുനാമങ്ങളും നിഷ്പന്നമായിട്ടുള്ളത്. എന്നാല്‍ ചില ധാതുനാമങ്ങള്‍ അവയുടെ രാസസംഘടനത്തെ സൂചിപ്പിക്കുന്ന പദങ്ങളില്‍നിന്നാണ് ഉരുത്തിരിഞ്ഞിട്ടുള്ളത്. ആധുനിക നാമകരണ രീതിയില്‍ '-ഐറ്റ്' ('-ite') എന്ന പര പ്രത്യയം (suffix) ധാതുനാമത്തിനൊപ്പം സാധാരണമാണ്. പേരിന്റെ ആദ്യഭാഗം ധാതുവിന്റെ നിറം (ഉദാ. ആല്‍ബൈറ്റ്), ആപേക്ഷിക ഘനത്വം (ഉദാ. ബെറൈറ്റ്) രാസസംഘടനം തുടങ്ങിയ സവിശേഷതകളെ സൂചിപ്പിക്കുന്ന ഗ്രീക്ക് അഥവാ ലാറ്റിന്‍ പദത്തിലായിരിക്കും ആരംഭിക്കുക. ഉദാ. വെളുപ്പ് എന്നര്‍ഥമുള്ള ആല്‍ബസ് എന്ന ലാറ്റിന്‍ പദത്തില്‍നിന്നാണ് അല്‍ബൈറ്റ് എന്ന ധാതുനാമം നിഷ്പന്നമായിട്ടുള്ളത്. വിദളനത്തെ (cleavage) ആസ്പദമാക്കിയാണ് നാമകരണമെങ്കില്‍ '- ക്ലേസ്' ('-clase') എന്നും (ഉദാ. ഓര്‍ത്തോക്ലേസ്), ശല്കാവസ്ഥയെ (flaky nature) അടിസ്ഥാനമാക്കിയാണെങ്കില്‍ '- ഫിലൈറ്റ്' ('phyllite') എന്നും (ഉദാ. പൈറോഫിലൈറ്റ്) പര പ്രത്യയങ്ങള്‍ ചേര്‍ക്കുന്നു.
മിക്ക ധാതുക്കൾക്കും അവ കണ്ടെത്തിയവരാണ് പേരുകൾ നല്കിയിട്ടുള്ളത്. ധാതുവിന്റെ നിറം, ക്രിസ്റ്റൽ ഘടന, ആപേക്ഷിക ഘനത്വം എന്നിവയെ സൂചിപ്പിക്കുന്ന ഗ്രീക്ക് അഥവാ ലാറ്റിൻ പദങ്ങളിൽനിന്നാണ് മിക്ക ധാതുനാമങ്ങളും നിഷ്പന്നമായിട്ടുള്ളത്. എന്നാൽ ചില ധാതുനാമങ്ങൾ അവയുടെ രാസസംഘടനത്തെ സൂചിപ്പിക്കുന്ന പദങ്ങളിൽനിന്നാണ് ഉരുത്തിരിഞ്ഞിട്ടുള്ളത്. ആധുനിക നാമകരണ രീതിയിൽ '-ഐറ്റ്' ('-ite') എന്ന പര പ്രത്യയം (suffix) ധാതുനാമത്തിനൊപ്പം സാധാരണമാണ്. പേരിന്റെ ആദ്യഭാഗം ധാതുവിന്റെ നിറം (ഉദാ. ആൽബൈറ്റ്), ആപേക്ഷിക ഘനത്വം (ഉദാ. ബെറൈറ്റ്) രാസസംഘടനം തുടങ്ങിയ സവിശേഷതകളെ സൂചിപ്പിക്കുന്ന ഗ്രീക്ക് അഥവാ ലാറ്റിൻ പദത്തിലായിരിക്കും ആരംഭിക്കുക. ഉദാ. വെളുപ്പ് എന്നർഥമുള്ള ആൽബസ് എന്ന ലാറ്റിൻ പദത്തിൽനിന്നാണ് അൽബൈറ്റ് എന്ന ധാതുനാമം നിഷ്പന്നമായിട്ടുള്ളത്. വിദളനത്തെ (cleavage) ആസ്പദമാക്കിയാണ് നാമകരണമെങ്കിൽ '- ക്ലേസ്' ('-clase') എന്നും (ഉദാ. ഓർത്തോക്ലേസ്), ശല്കാവസ്ഥയെ (flaky nature) അടിസ്ഥാനമാക്കിയാണെങ്കിൽ '- ഫിലൈറ്റ്' ('phyllite') എന്നും (ഉദാ. പൈറോഫിലൈറ്റ്) പര പ്രത്യയങ്ങൾ ചേർക്കുന്നു.


സ്ഥലങ്ങളുടെയും വ്യക്തികളുടെയും പേരുകളും ധാതുക്കളുടെ നാമകരണത്തിന് അടിസ്ഥാനമാക്കാറുണ്ട്. സ്ഥലനാമങ്ങളുമായി ബന്ധപ്പെട്ട ധാതുനാമങ്ങള്‍ മിക്കവയും അവ ആദ്യം കണ്ടെത്തിയ സ്ഥലത്തെയായിരിക്കും സൂചിപ്പിക്കുക. ഉദാ. ന്യൂ ജെഴ്സിയിലെ ഫ്രാങ്ക്ളിന്‍ എന്ന സ്ഥലത്തെ സൂചിപ്പിക്കുന്ന ഫ്രാങ്ക്ളിനൈറ്റ്, സ്പെയിനിലെ അരഗൊണ്‍ (Aragon) എന്ന സ്ഥലനാമത്തില്‍ നിന്ന് നിഷ്പന്നമായ അരഗൊണൈറ്റ് തുടങ്ങിയവ. പ്രസിദ്ധരായ ധാതുവിജ്ഞാനികള്‍, ധാതു സമ്പാദകര്‍, ഖനി ഉടമകള്‍ തുടങ്ങിയവരുടെ പേരുകളും ചിലപ്പോള്‍ ധാതുനാമങ്ങള്‍ക്ക് ഉപോദ്ബലകമായി സ്വീകരിച്ചിട്ടുണ്ട്. 1960-ല്‍ നിലവില്‍വന്ന ധാതുക്കളുടെ അന്തര്‍ദേശീയ നാമകരണ സമിതി ധാതുക്കളുടെ ശാസ്ത്രീയ നാമകരണം കൂടുതല്‍ ക്രമബദ്ധമാക്കി.
സ്ഥലങ്ങളുടെയും വ്യക്തികളുടെയും പേരുകളും ധാതുക്കളുടെ നാമകരണത്തിന് അടിസ്ഥാനമാക്കാറുണ്ട്. സ്ഥലനാമങ്ങളുമായി ബന്ധപ്പെട്ട ധാതുനാമങ്ങൾ മിക്കവയും അവ ആദ്യം കണ്ടെത്തിയ സ്ഥലത്തെയായിരിക്കും സൂചിപ്പിക്കുക. ഉദാ. ന്യൂ ജെഴ്സിയിലെ ഫ്രാങ്ക്ളിൻ എന്ന സ്ഥലത്തെ സൂചിപ്പിക്കുന്ന ഫ്രാങ്ക്ളിനൈറ്റ്, സ്പെയിനിലെ അരഗൊൺ (Aragon) എന്ന സ്ഥലനാമത്തിൽ നിന്ന് നിഷ്പന്നമായ അരഗൊണൈറ്റ് തുടങ്ങിയവ. പ്രസിദ്ധരായ ധാതുവിജ്ഞാനികൾ, ധാതു സമ്പാദകർ, ഖനി ഉടമകൾ തുടങ്ങിയവരുടെ പേരുകളും ചിലപ്പോൾ ധാതുനാമങ്ങൾക്ക് ഉപോദ്ബലകമായി സ്വീകരിച്ചിട്ടുണ്ട്. 1960- നിലവിൽവന്ന ധാതുക്കളുടെ അന്തർദേശീയ നാമകരണ സമിതി ധാതുക്കളുടെ ശാസ്ത്രീയ നാമകരണം കൂടുതൽ ക്രമബദ്ധമാക്കി.


== ഉപയോഗം ==
== ഉപയോഗം ==
ആധുനിക മനുഷ്യജീവിതത്തിന്റെ എല്ലാ തലങ്ങളിലും ധാതുക്കളുടെയും അവയില്‍നിന്നു നിഷ്പന്നമാകുന്ന പദാര്‍ഥങ്ങളുടെയും ഉപയോഗം അത്യന്താപേഷിതമാണ്. ഉപയോഗത്തിന്റെ അടിസ്ഥാനത്തില്‍ ധാതുക്കളെ രണ്ട് വിപുല വിഭാഗങ്ങളായി വിഭജിച്ചിരിക്കുന്നു;
ആധുനിക മനുഷ്യജീവിതത്തിന്റെ എല്ലാ തലങ്ങളിലും ധാതുക്കളുടെയും അവയിൽനിന്നു നിഷ്പന്നമാകുന്ന പദാർഥങ്ങളുടെയും ഉപയോഗം അത്യന്താപേഷിതമാണ്. ഉപയോഗത്തിന്റെ അടിസ്ഥാനത്തിൽ ധാതുക്കളെ രണ്ട് വിപുല വിഭാഗങ്ങളായി വിഭജിച്ചിരിക്കുന്നു;
# അയിര് ധാതുക്കള്‍,
# അയിര് ധാതുക്കൾ,
# വ്യാവസായിക ധാതുക്കള്‍.
# വ്യാവസായിക ധാതുക്കൾ.
ലോഹഖനനത്തിന്റെ സ്രോതസ്സുകളായ ധാതുക്കളാണ് ആദ്യ വിഭാഗത്തില്‍ (ഉദാ. ചാല്‍ക്കോപൈറൈറ്റ്-ചെമ്പിന്റെ അയിര്). ഒരു പ്രത്യേക ലോഹത്തിനുപരി വ്യാവസായികാവശ്യത്തിനുള്ള അസംസ്കൃത വസ്തുക്കള്‍ പ്രദാനം ചെയ്യാന്‍ കഴിയുന്ന അഥവാ വ്യവസായത്തില്‍ അസംസ്കൃത വസ്തുക്കളായി ഉപയോഗിക്കാന്‍ കഴിയുന്ന ധാതുക്കളാണ് വ്യാവസായിക ധാതുക്കള്‍. ചില ധാതുക്കള്‍ പ്രകൃതിയില്‍നിന്നു ലഭിക്കുന്ന അവസ്ഥയില്‍ത്തന്നെ വ്യാവസായികാവശ്യങ്ങള്‍ക്ക് ഉപയോഗിക്കുമ്പോള്‍ (ഉദാ. കളിമണ്ണ്) മറ്റു ചിലത് വിവിധ തരം സംസ്കരണ പ്രക്രിയകള്‍ക്കു ശേഷമാണ് ഉപയോഗിക്കുന്നത്.
ലോഹഖനനത്തിന്റെ സ്രോതസ്സുകളായ ധാതുക്കളാണ് ആദ്യ വിഭാഗത്തിൽ (ഉദാ. ചാൽക്കോപൈറൈറ്റ്-ചെമ്പിന്റെ അയിര്). ഒരു പ്രത്യേക ലോഹത്തിനുപരി വ്യാവസായികാവശ്യത്തിനുള്ള അസംസ്കൃത വസ്തുക്കൾ പ്രദാനം ചെയ്യാൻ കഴിയുന്ന അഥവാ വ്യവസായത്തിൽ അസംസ്കൃത വസ്തുക്കളായി ഉപയോഗിക്കാൻ കഴിയുന്ന ധാതുക്കളാണ് വ്യാവസായിക ധാതുക്കൾ. ചില ധാതുക്കൾ പ്രകൃതിയിൽനിന്നു ലഭിക്കുന്ന അവസ്ഥയിൽത്തന്നെ വ്യാവസായികാവശ്യങ്ങൾക്ക് ഉപയോഗിക്കുമ്പോൾ (ഉദാ. കളിമണ്ണ്) മറ്റു ചിലത് വിവിധ തരം സംസ്കരണ പ്രക്രിയകൾക്കു ശേഷമാണ് ഉപയോഗിക്കുന്നത്.
== വർഗ്ഗീകരണം ==
== വര്‍ഗ്ഗീകരണം ==


പല തരത്തിലുള്ള ധാതു വര്‍ഗീകരണ സമ്പ്രദായങ്ങള്‍ നിലവിലുണ്ടെങ്കിലും ധാതുക്കളുടെ രാസ സംഘടനത്തെ അടിസ്ഥാനമാക്കിയുള്ള വര്‍ഗീകരണത്തിനാണ് കൂടുതല്‍ പ്രാമുഖ്യം. സിസ്റ്റം ഒഫ് മിനറോളജിയുടെ കര്‍ത്താവായ ജെയിംസ് ഡ്വെയ്റ്റ് ഡാനയാണ് ഈ വര്‍ഗീകരണ സമ്പ്രദായം അവതിപ്പിച്ചത്. ഈ സമ്പ്രദായപ്രകാരം ധാതുക്കളെ 17 ക്ലാസ്സുകളായി വര്‍ഗീകരിച്ചിരിക്കുന്നു. 1. പ്രാകൃതിക മൂലകങ്ങള്‍, 2. സള്‍ഫൈഡുകള്‍, 3. ഓക്സൈഡുകള്‍, 4. ഹൈഡ്രോക്സൈഡുകള്‍, 5. ഹാലൈഡുകള്‍, 6. കാര്‍ബണേറ്റുകള്‍, 7. നൈട്രേറ്റുകള്‍, 8. ബോറേറ്റുകള്‍, 9. അയഡേറ്റുകള്‍, 10. സള്‍ഫേറ്റുകള്‍ 11. ക്രോമേറ്റുകള്‍, 12. മോളിബ്ഡേറ്റുകള്‍, 13. ടങ്സ്റ്റേറ്റുകള്‍, 14. ഫോസ്ഫേറ്റുകള്‍, 15. ആര്‍സനേറ്റുകള്‍, 16. വനേഡുകള്‍, 17. സിലിക്കേറ്റുകള്‍ എന്നിവയാണ് അവ. ഇവയില്‍ സിലിക്കേറ്റുകളാണ് ഭൂവല്കത്തില്‍ ഏറ്റവും കൂടുതല്‍ കാണപ്പെടുന്നത്.
പല തരത്തിലുള്ള ധാതു വർഗീകരണ സമ്പ്രദായങ്ങൾ നിലവിലുണ്ടെങ്കിലും ധാതുക്കളുടെ രാസ സംഘടനത്തെ അടിസ്ഥാനമാക്കിയുള്ള വർഗീകരണത്തിനാണ് കൂടുതൽ പ്രാമുഖ്യം. സിസ്റ്റം ഒഫ് മിനറോളജിയുടെ കർത്താവായ ജെയിംസ് ഡ്വെയ്റ്റ് ഡാനയാണ് ഈ വർഗീകരണ സമ്പ്രദായം അവതിപ്പിച്ചത്. ഈ സമ്പ്രദായപ്രകാരം ധാതുക്കളെ 17 ക്ലാസ്സുകളായി വർഗീകരിച്ചിരിക്കുന്നു. 1. പ്രാകൃതിക മൂലകങ്ങൾ, 2. സൾഫൈഡുകൾ, 3. ഓക്സൈഡുകൾ, 4. ഹൈഡ്രോക്സൈഡുകൾ, 5. ഹാലൈഡുകൾ, 6. കാർബണേറ്റുകൾ, 7. നൈട്രേറ്റുകൾ, 8. ബോറേറ്റുകൾ, 9. അയഡേറ്റുകൾ, 10. സൾഫേറ്റുകൾ 11. ക്രോമേറ്റുകൾ, 12. മോളിബ്ഡേറ്റുകൾ, 13. ടങ്സ്റ്റേറ്റുകൾ, 14. ഫോസ്ഫേറ്റുകൾ, 15. ആർസനേറ്റുകൾ, 16. വനേഡുകൾ, 17. സിലിക്കേറ്റുകൾ എന്നിവയാണ് അവ. ഇവയിൽ സിലിക്കേറ്റുകളാണ് ഭൂവല്കത്തിൽ ഏറ്റവും കൂടുതൽ കാണപ്പെടുന്നത്.


രാസസംഘടനത്തെയാണ് ധാതുവര്‍ഗീകരണത്തിന്റെ അടിസ്ഥാന മാപകമായി പരിഗണിക്കുന്നതെങ്കിലും ഉദ്ഭവം, ഉപസ്ഥിതി, ചില ഭൗതിക ഗുണങ്ങള്‍ അഥവാ ഉപയോഗം എന്നിവയും ചിലപ്പോള്‍ ധാതുക്കളുടെ വര്‍ഗീകരണത്തിന് നിദാനമാകാറുണ്ട്. ഉദ്ഭവത്തിന്റെ അടിസ്ഥാനത്തില്‍ ധാതുക്കളെ പ്രാഥമിക ധാതുക്കള്‍ (Primary minerals) എന്നും മധ്യമ ധാതുക്കള്‍ (Secondary minerals) എന്നും രണ്ടായി വിഭജിച്ചിരിക്കുന്നു. മാഗ്മയില്‍നിന്ന് നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെടുന്നവയാണ് പ്രാഥമിക ധാതുക്കള്‍; അല്ലാത്തവ മധ്യമ ധാതുക്കളും. ആഗ്നേയ-കായാന്തരിത-അവസാദ ശിലകളില്‍ മുഖ്യ ഘടകങ്ങളായി വര്‍ത്തിക്കുന്ന ധാതുക്കളെ ശിലാനിര്‍മിത ധാതുക്കള്‍ എന്നു വിളിക്കുന്നു (ഉദാ. ക്വാര്‍ട്ട്സ്, ഫെല്‍സ്പാര്‍, അഭ്രം തുടങ്ങിയവ). അവശ്യ ധാതുക്കള്‍ അഥവാ മൂല ധാതുക്കള്‍ (essential minerals) എന്നും ഇവ അറിയപ്പെടുന്നു. എന്നാല്‍ ശിലകളില്‍ നാമമാത്രമായി മാത്രം കാണപ്പെടുന്ന ചില ധാതുക്കളുണ്ട്. ഇവ ഉപ ധാതുക്കള്‍ (accessory minerals) എന്ന പേരില്‍ അറിയപ്പെടുന്നു. (ഉദാ. പൈറൈറ്റ്, സിര്‍ക്കോണ്‍ തുടങ്ങിയവ.) സമരൂപികള്‍ അഥവാ ഐസോമോര്‍ഫസുകള്‍ ഉള്‍പ്പെട്ട ധാതുഗണമാണ് ഐസോമോര്‍ഫസ് ഗ്രൂപ്പ് (ഉദാ. ഗാര്‍ണെറ്റ് ഗ്രൂപ്പ്). രാസ-ഭൌതിക ഗുണധര്‍മങ്ങളില്‍ പരസ്പര ബന്ധമുള്ള ധാതുക്കളെ ധാതുകുടുംബങ്ങളായി വിഭജിക്കുന്ന സമ്പ്രദായവും നിലവിലുണ്ട്. എന്നാല്‍ ഇവ സമരൂപികളാകണമെന്നില്ല.
രാസസംഘടനത്തെയാണ് ധാതുവർഗീകരണത്തിന്റെ അടിസ്ഥാന മാപകമായി പരിഗണിക്കുന്നതെങ്കിലും ഉദ്ഭവം, ഉപസ്ഥിതി, ചില ഭൗതിക ഗുണങ്ങൾ അഥവാ ഉപയോഗം എന്നിവയും ചിലപ്പോൾ ധാതുക്കളുടെ വർഗീകരണത്തിന് നിദാനമാകാറുണ്ട്. ഉദ്ഭവത്തിന്റെ അടിസ്ഥാനത്തിൽ ധാതുക്കളെ പ്രാഥമിക ധാതുക്കൾ (Primary minerals) എന്നും മധ്യമ ധാതുക്കൾ (Secondary minerals) എന്നും രണ്ടായി വിഭജിച്ചിരിക്കുന്നു. മാഗ്മയിൽനിന്ന് നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെടുന്നവയാണ് പ്രാഥമിക ധാതുക്കൾ; അല്ലാത്തവ മധ്യമ ധാതുക്കളും. ആഗ്നേയ-കായാന്തരിത-അവസാദ ശിലകളിൽ മുഖ്യ ഘടകങ്ങളായി വർത്തിക്കുന്ന ധാതുക്കളെ ശിലാനിർമിത ധാതുക്കൾ എന്നു വിളിക്കുന്നു (ഉദാ. ക്വാർട്ട്സ്, ഫെൽസ്പാർ, അഭ്രം തുടങ്ങിയവ). അവശ്യ ധാതുക്കൾ അഥവാ മൂല ധാതുക്കൾ (essential minerals) എന്നും ഇവ അറിയപ്പെടുന്നു. എന്നാൽ ശിലകളിൽ നാമമാത്രമായി മാത്രം കാണപ്പെടുന്ന ചില ധാതുക്കളുണ്ട്. ഇവ ഉപ ധാതുക്കൾ (accessory minerals) എന്ന പേരിൽ അറിയപ്പെടുന്നു. (ഉദാ. പൈറൈറ്റ്, സിർക്കോൺ തുടങ്ങിയവ.) സമരൂപികൾ അഥവാ ഐസോമോർഫസുകൾ ഉൾപ്പെട്ട ധാതുഗണമാണ് ഐസോമോർഫസ് ഗ്രൂപ്പ് (ഉദാ. ഗാർണെറ്റ് ഗ്രൂപ്പ്). രാസ-ഭൌതിക ഗുണധർമങ്ങളിൽ പരസ്പര ബന്ധമുള്ള ധാതുക്കളെ ധാതുകുടുംബങ്ങളായി വിഭജിക്കുന്ന സമ്പ്രദായവും നിലവിലുണ്ട്. എന്നാൽ ഇവ സമരൂപികളാകണമെന്നില്ല.


സാമ്പത്തിക പ്രാധാന്യമുള്ള ധാതുക്കളെ പൊതുവേ സാമ്പത്തിക ഖനിജങ്ങള്‍ (economic minerals) എന്നു വിളിക്കുന്നു. ലോഹ, അലോഹ, രത്ന ധാതുക്കളാണ് പ്രധാനമായും സാമ്പത്തിക ധാതുക്കളുടെ പട്ടികയില്‍ ഉള്‍പ്പെടുന്നത്. രാസികവും ഭൗതികവുമായ അപക്ഷയ പ്രക്രിയകളെ അതിജീവിക്കാന്‍ കഴിയുന്ന ധാതുക്കളെ പൊതുവേ ദൃഢ ധാതുക്കള്‍ (Stable minerals) എന്നു വിളിക്കുന്നു. കാഠിന്യം വളരെ കൂടിയ ഇത്തരം ധാതുക്കള്‍ക്ക് അലേയ സ്വഭാവവും വളരെ കൂടുതലായിരിക്കും. നദീതീരങ്ങളിലും കടല്‍ത്തീരങ്ങളിലും മറ്റും പ്ലേയ്സര്‍ (Placer) നിക്ഷേപങ്ങളായി കാണപ്പെടുന്ന ധാതുക്കള്‍ക്ക് ഘന ധാതുക്കള്‍ (Heavy minerals) എന്നാണ് പേര്. ഉയര്‍ന്ന ആപേക്ഷിക ഘനത്വമാണ് ഇവയുടെ മുഖ്യ സവിശേഷത. പരിവര്‍ത്തന വിധേയമാകാത്ത ശിലാഘടകങ്ങളെയും ചിലപ്പോള്‍ ധാതുക്കള്‍ എന്നു വിശേഷിപ്പിക്കാറുണ്ട്. ഇവ പൊതുവേ അവിശിഷ്ട ധാതുക്കള്‍ (detrial minerals) എന്നറിയപ്പെടുന്നു. ഉദ്ഭവസ്ഥാനത്തിന്റെ അടിസ്ഥാനത്തിലും ചിലപ്പോള്‍ ധാതുക്കളെ വര്‍ഗീകരിക്കാറുണ്ട്.
സാമ്പത്തിക പ്രാധാന്യമുള്ള ധാതുക്കളെ പൊതുവേ സാമ്പത്തിക ഖനിജങ്ങൾ (economic minerals) എന്നു വിളിക്കുന്നു. ലോഹ, അലോഹ, രത്ന ധാതുക്കളാണ് പ്രധാനമായും സാമ്പത്തിക ധാതുക്കളുടെ പട്ടികയിൽ ഉൾപ്പെടുന്നത്. രാസികവും ഭൗതികവുമായ അപക്ഷയ പ്രക്രിയകളെ അതിജീവിക്കാൻ കഴിയുന്ന ധാതുക്കളെ പൊതുവേ ദൃഢ ധാതുക്കൾ (Stable minerals) എന്നു വിളിക്കുന്നു. കാഠിന്യം വളരെ കൂടിയ ഇത്തരം ധാതുക്കൾക്ക് അലേയ സ്വഭാവവും വളരെ കൂടുതലായിരിക്കും. നദീതീരങ്ങളിലും കടൽത്തീരങ്ങളിലും മറ്റും പ്ലേയ്സർ (Placer) നിക്ഷേപങ്ങളായി കാണപ്പെടുന്ന ധാതുക്കൾക്ക് ഘന ധാതുക്കൾ (Heavy minerals) എന്നാണ് പേര്. ഉയർന്ന ആപേക്ഷിക ഘനത്വമാണ് ഇവയുടെ മുഖ്യ സവിശേഷത. പരിവർത്തന വിധേയമാകാത്ത ശിലാഘടകങ്ങളെയും ചിലപ്പോൾ ധാതുക്കൾ എന്നു വിശേഷിപ്പിക്കാറുണ്ട്. ഇവ പൊതുവേ അവിശിഷ്ട ധാതുക്കൾ (detrial minerals) എന്നറിയപ്പെടുന്നു. ഉദ്ഭവസ്ഥാനത്തിന്റെ അടിസ്ഥാനത്തിലും ചിലപ്പോൾ ധാതുക്കളെ വർഗീകരിക്കാറുണ്ട്.


== രൂപവത്കരണം ==
== രൂപവത്കരണം ==


നാല് വ്യത്യസ്ത പ്രക്രിയകളിലൂടെയാണ് പ്രധാനമായും ധാതുക്കളുടെ രൂപവത്കരണം സംഭവിക്കുന്നത്.
നാല് വ്യത്യസ്ത പ്രക്രിയകളിലൂടെയാണ് പ്രധാനമായും ധാതുക്കളുടെ രൂപവത്കരണം സംഭവിക്കുന്നത്.
# അഗ്നിപര്‍വതജന്യ വാതകങ്ങളില്‍നിന്ന് നേരിട്ട് ഘനീഭവിച്ച് (sublimation),
# അഗ്നിപർവതജന്യ വാതകങ്ങളിൽനിന്ന് നേരിട്ട് ഘനീഭവിച്ച് (sublimation),
# ജലീയ പൂരിതലായനികളില്‍നിന്ന് ക്രിസ്റ്റലീ കരിക്കപ്പെട്ട്,
# ജലീയ പൂരിതലായനികളിൽനിന്ന് ക്രിസ്റ്റലീ കരിക്കപ്പെട്ട്,
# മാഗ്മയില്‍ നിന്ന് നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെട്ട്,
# മാഗ്മയിൽ നിന്ന് നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെട്ട്,
# കായാന്തരീകരണം മുഖേന.
# കായാന്തരീകരണം മുഖേന.


=== അഗ്നിപർവതജന്യ വാതകങ്ങളിൽനിന്ന് ===
=== അഗ്നിപര്‍വതജന്യ വാതകങ്ങളില്‍നിന്ന് ===
അഗ്നിപര്‍വത വിസ്ഫോടന സമയത്ത് അഗ്നിപര്‍വത നാളികള്‍ അഥവാ ഫ്യൂമറോളുകളില്‍ (Fumaroles) നിന്ന് ബഹിര്‍ഗമിക്കപ്പെടുന്ന വാതകങ്ങളുടെ ഘനീഭവനം (condensation) ചിലപ്പോള്‍ പരിമിത അളവില്‍ ധാതുക്കളുടെ രൂപവത്കരണത്തിന് കാരണമാകാറുണ്ട്. സലംമൊണിക് (NH4Cl), സള്‍ഫര്‍ (S), ബോറിക് ആസിഡ് (H3BO3FeCl3) എന്നിവ നീരാവിയുമായി പ്രവര്‍ത്തിക്കുന്നതിന്റെ ഫലമായി പരിമിത അളവില്‍ ഹിമറ്റൈറ്റ് രൂപംകൊള്ളുന്നത് ഇത്തരം ധാതുരൂപവത്കരണ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്.
അഗ്നിപർവത വിസ്ഫോടന സമയത്ത് അഗ്നിപർവത നാളികൾ അഥവാ ഫ്യൂമറോളുകളിൽ (Fumaroles) നിന്ന് ബഹിർഗമിക്കപ്പെടുന്ന വാതകങ്ങളുടെ ഘനീഭവനം (condensation) ചിലപ്പോൾ പരിമിത അളവിൽ ധാതുക്കളുടെ രൂപവത്കരണത്തിന് കാരണമാകാറുണ്ട്. സലംമൊണിക് (NH4Cl), സൾഫർ (S), ബോറിക് ആസിഡ് (H3BO3FeCl3) എന്നിവ നീരാവിയുമായി പ്രവർത്തിക്കുന്നതിന്റെ ഫലമായി പരിമിത അളവിൽ ഹിമറ്റൈറ്റ് രൂപംകൊള്ളുന്നത് ഇത്തരം ധാതുരൂപവത്കരണ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്.
FeCl3(ബാഷ്പം) + H2O(നീരാവി) → Fe2O3 + HCl
FeCl3(ബാഷ്പം) + H2O(നീരാവി) → Fe2O3 + HCl


=== ജലീയ പൂരിതലായനികളില്‍നിന്ന് ===
=== ജലീയ പൂരിതലായനികളിൽനിന്ന് ===


ധാതുരൂപവത്കരണത്തിന്റെ ഒരു പ്രധാന സ്രോതസ്സാണ് ജലീയ പൂരിത ദ്രാവകം. ജലീയ ദ്രാവകത്തില്‍ ലയിച്ചുചേര്‍ന്നിരിക്കുന്ന ധാതവ പദാര്‍ഥങ്ങള്‍ വിവിധ പ്രക്രിയകളിലൂടെ ഊറലിനു വിധേയമാകുമ്പോഴാണ് ധാതു രൂപവത്കരണം സംഭവിക്കുന്നത്. ലായക പദാര്‍ഥങ്ങളുടെ അക്ഷയ ഖനിയായ സമുദ്രജലം ബാഷ്പീകരണത്തിനു വിധേയമാകുന്നതിന്റെ ഫലമായി അതില്‍ ലയിച്ചുചേര്‍ന്നിരിക്കുന്ന ധാതവ പദാര്‍ഥങ്ങള്‍ ഖരപദാര്‍ഥങ്ങളിലായി അടിയുന്നത് (ഉദാ. ഉപ്പ്, ജിപ്സം) ഈ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്. ബാഷ്പീകരണ പ്രക്രിയയുടെ തോത് വര്‍ദ്ധിക്കുന്നതിന് ആനുപാതികമായി മഗ്നീഷ്യം (Mg), പൊട്ടാസിയം (K) തുടങ്ങിയ ധാതുക്കളുടെ ഊറല്‍ സംഭവിക്കുന്നു.
ധാതുരൂപവത്കരണത്തിന്റെ ഒരു പ്രധാന സ്രോതസ്സാണ് ജലീയ പൂരിത ദ്രാവകം. ജലീയ ദ്രാവകത്തിൽ ലയിച്ചുചേർന്നിരിക്കുന്ന ധാതവ പദാർഥങ്ങൾ വിവിധ പ്രക്രിയകളിലൂടെ ഊറലിനു വിധേയമാകുമ്പോഴാണ് ധാതു രൂപവത്കരണം സംഭവിക്കുന്നത്. ലായക പദാർഥങ്ങളുടെ അക്ഷയ ഖനിയായ സമുദ്രജലം ബാഷ്പീകരണത്തിനു വിധേയമാകുന്നതിന്റെ ഫലമായി അതിൽ ലയിച്ചുചേർന്നിരിക്കുന്ന ധാതവ പദാർഥങ്ങൾ ഖരപദാർഥങ്ങളിലായി അടിയുന്നത് (ഉദാ. ഉപ്പ്, ജിപ്സം) ഈ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്. ബാഷ്പീകരണ പ്രക്രിയയുടെ തോത് വർദ്ധിക്കുന്നതിന് ആനുപാതികമായി മഗ്നീഷ്യം (Mg), പൊട്ടാസിയം (K) തുടങ്ങിയ ധാതുക്കളുടെ ഊറൽ സംഭവിക്കുന്നു.


ഉഷ്ണ നീരുറവകളും ഗെയ്സെറുകളും (Geysers) കാണപ്പെടുന്ന പ്രദേശങ്ങളില്‍ ഉഷ്ണജലം ഉന്നത മര്‍ദത്തിന്റെ സാന്നിധ്യത്തില്‍ താഴെത്തട്ടിലുള്ള ശിലാപദാര്‍ഥങ്ങളെ ലയിപ്പിച്ച് ഉപരിതലത്തിലെത്തിച്ച് നിക്ഷേപണവിധേയമാക്കുന്ന പ്രക്രിയ സാധാരണമാണ് (ഉദാ. യെല്ലോസ്റ്റോണ്‍ പാര്‍ക്കിലെ ഓപല്‍, ട്രാവെട്രിന്‍ നിക്ഷേപങ്ങള്‍). കാര്‍ബണ്‍ ഡൈഓക്സൈഡിന്റെ ശോഷണം മൂലം രൂപംകൊള്ളുന്ന ഏക ധാതുവാണ് കാല്‍സ്യം കാര്‍ബണേറ്റ്. പൂരിത കാര്‍ബണ്‍ ഡൈഓക്സൈഡിന്റെ സാന്നിധ്യത്തില്‍ മാത്രമേ കാല്‍സ്യം കാര്‍ബണേറ്റ് ജലത്തില്‍ ലയിക്കുകയുള്ളൂ. ജലത്തില്‍ ലയിച്ചുചേര്‍ന്നിരിക്കുന്ന കാല്‍സ്യം കാര്‍ബണേറ്റ് CO2-ന്റെ ശോഷണംമൂലം പുനഃക്രിസ്റ്റലീകരിക്കപ്പെടുന്നതിന്റെ ഫലമാണ് ലോകത്തിലുടനീളം കാണപ്പെടുന്ന ചുണ്ണാമ്പുകല്‍ ഗുഹകള്‍. ഈ രാസപ്രവര്‍ത്തനം ഉഭയദിശീയമായതിനാല്‍ CO2-ന്റെ ശോഷണം കാല്‍സ്യം കാര്‍ബണേറ്റിനെ സ്റ്റാലഗ്റ്റൈറ്റ്, സ്റ്റാലഗ്മൈറ്റ് എന്നിവയുടെ രൂപത്തില്‍ പുനര്‍നിക്ഷേപിക്കപ്പെടുന്നു. അരുവികളുടെയും പുഴകളുടെയും തീരങ്ങളില്‍ കാണപ്പെടുന്ന കാല്‍സിയമയ ടുഫയും (Calcareous tufa) സമാന പ്രക്രിയയുടെ ഫലമായാണ് രൂപംകൊള്ളുന്നത്.
ഉഷ്ണ നീരുറവകളും ഗെയ്സെറുകളും (Geysers) കാണപ്പെടുന്ന പ്രദേശങ്ങളിൽ ഉഷ്ണജലം ഉന്നത മർദത്തിന്റെ സാന്നിധ്യത്തിൽ താഴെത്തട്ടിലുള്ള ശിലാപദാർഥങ്ങളെ ലയിപ്പിച്ച് ഉപരിതലത്തിലെത്തിച്ച് നിക്ഷേപണവിധേയമാക്കുന്ന പ്രക്രിയ സാധാരണമാണ് (ഉദാ. യെല്ലോസ്റ്റോൺ പാർക്കിലെ ഓപൽ, ട്രാവെട്രിൻ നിക്ഷേപങ്ങൾ). കാർബൺ ഡൈഓക്സൈഡിന്റെ ശോഷണം മൂലം രൂപംകൊള്ളുന്ന ഏക ധാതുവാണ് കാൽസ്യം കാർബണേറ്റ്. പൂരിത കാർബൺ ഡൈഓക്സൈഡിന്റെ സാന്നിധ്യത്തിൽ മാത്രമേ കാൽസ്യം കാർബണേറ്റ് ജലത്തിൽ ലയിക്കുകയുള്ളൂ. ജലത്തിൽ ലയിച്ചുചേർന്നിരിക്കുന്ന കാൽസ്യം കാർബണേറ്റ് CO2-ന്റെ ശോഷണംമൂലം പുനഃക്രിസ്റ്റലീകരിക്കപ്പെടുന്നതിന്റെ ഫലമാണ് ലോകത്തിലുടനീളം കാണപ്പെടുന്ന ചുണ്ണാമ്പുകൽ ഗുഹകൾ. ഈ രാസപ്രവർത്തനം ഉഭയദിശീയമായതിനാൽ CO2-ന്റെ ശോഷണം കാൽസ്യം കാർബണേറ്റിനെ സ്റ്റാലഗ്റ്റൈറ്റ്, സ്റ്റാലഗ്മൈറ്റ് എന്നിവയുടെ രൂപത്തിൽ പുനർനിക്ഷേപിക്കപ്പെടുന്നു. അരുവികളുടെയും പുഴകളുടെയും തീരങ്ങളിൽ കാണപ്പെടുന്ന കാൽസിയമയ ടുഫയും (Calcareous tufa) സമാന പ്രക്രിയയുടെ ഫലമായാണ് രൂപംകൊള്ളുന്നത്.


സമുദ്രജലത്തില്‍ ലയിച്ചുചേര്‍ന്നിരിക്കുന്ന CaCO3, SiO2 എന്നിവ സമുദ്രത്തിലെ ചില സൂക്ഷ്മജീവികള്‍ വലിച്ചെടുത്ത് അവയുടെ പുറന്തോടുകളായി രൂപാന്തരപ്പെടുന്നത് സാധാരണമാണ്. പവിഴപ്പുറ്റുകള്‍, ക്രിനോയ്ഡുകള്‍, മൊളസ്ക്കുകള്‍, ഫൊറാമിനിഫെറകള്‍ എന്നീ ജീവികള്‍ സമുദ്രജലത്തില്‍നിന്ന് CaCO3 സ്രവിപ്പിക്കുമ്പോള്‍ ഡയാറ്റം, സ്പോഞ്ച്, റേഡിയോലാരിയന്‍സ് എന്നിവ SiO2 ആണ് സ്രവിപ്പിക്കുന്നത്. തത്ഫലമായി സമുദ്രാടിത്തട്ടില്‍ ചുണ്ണാമ്പുകല്ല്, ചാല്‍ക്ക്, ഡയാറ്റമേഷ്യസ് എര്‍ത്ത് എന്നീ ധാതു നിക്ഷേപങ്ങള്‍ രൂപംകൊള്ളുന്നു.
സമുദ്രജലത്തിൽ ലയിച്ചുചേർന്നിരിക്കുന്ന CaCO3, SiO2 എന്നിവ സമുദ്രത്തിലെ ചില സൂക്ഷ്മജീവികൾ വലിച്ചെടുത്ത് അവയുടെ പുറന്തോടുകളായി രൂപാന്തരപ്പെടുന്നത് സാധാരണമാണ്. പവിഴപ്പുറ്റുകൾ, ക്രിനോയ്ഡുകൾ, മൊളസ്ക്കുകൾ, ഫൊറാമിനിഫെറകൾ എന്നീ ജീവികൾ സമുദ്രജലത്തിൽനിന്ന് CaCO3 സ്രവിപ്പിക്കുമ്പോൾ ഡയാറ്റം, സ്പോഞ്ച്, റേഡിയോലാരിയൻസ് എന്നിവ SiO2 ആണ് സ്രവിപ്പിക്കുന്നത്. തത്ഫലമായി സമുദ്രാടിത്തട്ടിൽ ചുണ്ണാമ്പുകല്ല്, ചാൽക്ക്, ഡയാറ്റമേഷ്യസ് എർത്ത് എന്നീ ധാതു നിക്ഷേപങ്ങൾ രൂപംകൊള്ളുന്നു.


=== മാഗ്മയില്‍ നിന്ന് നേരിട്ട് ===
=== മാഗ്മയിൽ നിന്ന് നേരിട്ട് ===


ഭൂവല്കപാളികള്‍ക്കിടയിലേക്കു തള്ളിക്കയറുന്ന മാഗ്മ തണുത്തുറയുന്നതിന്റെ ഫലമായാണ് ഭൂരിഭാഗം ധാതുക്കളും രൂപംകൊള്ളുന്നത്. ഭൂപാളികള്‍ക്കിടയിലേക്കു തള്ളിക്കയറുന്ന മാഗ്മ ഭൂവല്കത്തില്‍ എത്തി വളരെപ്പെട്ടെന്ന് തണുത്തുറയുമ്പോള്‍ സ്ഫടികസമാനമോ ധാതുക്കളുടെ സൂക്ഷ്മതരികളടങ്ങിയതോ ആയ ശിലകള്‍ രൂപംകൊള്ളുന്നു. എന്നാല്‍ ഭൗമോപരിതലത്തിലെത്തുന്നതിനു മുമ്പുതന്നെ മാഗ്മയുടെ തണുത്തുറയല്‍ സംഭവിക്കുകയാണെങ്കില്‍ അതിസങ്കീര്‍ണമായ ധാതു സംയോഗത്തോടുകൂടിയ ശിലകളായിരിക്കും രൂപംകൊള്ളുക.
ഭൂവല്കപാളികൾക്കിടയിലേക്കു തള്ളിക്കയറുന്ന മാഗ്മ തണുത്തുറയുന്നതിന്റെ ഫലമായാണ് ഭൂരിഭാഗം ധാതുക്കളും രൂപംകൊള്ളുന്നത്. ഭൂപാളികൾക്കിടയിലേക്കു തള്ളിക്കയറുന്ന മാഗ്മ ഭൂവല്കത്തിൽ എത്തി വളരെപ്പെട്ടെന്ന് തണുത്തുറയുമ്പോൾ സ്ഫടികസമാനമോ ധാതുക്കളുടെ സൂക്ഷ്മതരികളടങ്ങിയതോ ആയ ശിലകൾ രൂപംകൊള്ളുന്നു. എന്നാൽ ഭൗമോപരിതലത്തിലെത്തുന്നതിനു മുമ്പുതന്നെ മാഗ്മയുടെ തണുത്തുറയൽ സംഭവിക്കുകയാണെങ്കിൽ അതിസങ്കീർണമായ ധാതു സംയോഗത്തോടുകൂടിയ ശിലകളായിരിക്കും രൂപംകൊള്ളുക.


സിലിക്കണ്‍, അലൂമിനിയം, ഇരുമ്പ്, കാല്‍സ്യം, മഗ്നീഷ്യം, സോഡിയം, പൊട്ടാഷ്യം എന്നിവയാണ് മാഗ്മയിലെ പ്രധാന മൂലക ഘടകങ്ങള്‍. ഇതില്‍ SiO2 അഥവാ സിലിക്കണ്‍ ആയിരിക്കും കൂടുതല്‍. ഇവയ്ക്കു പുറമേ വാതകങ്ങള്‍, ജലം, ക്ലോറിന്‍, ഫ്ലൂറിന്‍, കാര്‍ബണ്‍ ഡൈഓക്സൈഡ്, ബോറോണ്‍, സള്‍ഫര്‍ സംയുക്തങ്ങള്‍ എന്നിവയും ഉള്‍പ്പെട്ടിരിക്കും. മാഗ്മയില്‍നിന്നു നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെടുന്ന ധാതുക്കളുടെ പൊതുക്രമം ഇപ്രകാരമാണ്: 1. സിലിക്കാംശം വളരെ കുറഞ്ഞ അല്‍പസിലിക ധാതുക്കള്‍ (Basic minerals) -ഇരുമ്പ്, ചെമ്പ്, നിക്കല്‍, ക്രോമിയം, പ്ലാറ്റിനം, ടൈറ്റാനിയം, കാര്‍ബണ്‍ എന്നിവയുടെ ഓക്സൈഡുകളും സള്‍ഫൈഡുകളും 2. മധ്യവര്‍ത്തി ധാതുക്കള്‍ (പകുതിയിലുള്ളത്ര സിലിക്കാംശം അടങ്ങിയവ) 3. അധിസിലിക ധാതുക്കള്‍ (Acid minerals സിലിക്കാംശം വളരെ കൂടിയവ). മാഗ്മയില്‍നിന്ന് നേരിട്ടുള്ള ധാതുക്കളുടെ ക്രമബദ്ധമായ ഈ ക്രിസ്റ്റലീകരണ പ്രക്രിയയെ മാഗ്മാറ്റിക് വേര്‍തിരിയല്‍ എന്നു വിളിക്കുന്നു.
സിലിക്കൺ, അലൂമിനിയം, ഇരുമ്പ്, കാൽസ്യം, മഗ്നീഷ്യം, സോഡിയം, പൊട്ടാഷ്യം എന്നിവയാണ് മാഗ്മയിലെ പ്രധാന മൂലക ഘടകങ്ങൾ. ഇതിൽ SiO2 അഥവാ സിലിക്കൺ ആയിരിക്കും കൂടുതൽ. ഇവയ്ക്കു പുറമേ വാതകങ്ങൾ, ജലം, ക്ലോറിൻ, ഫ്ലൂറിൻ, കാർബൺ ഡൈഓക്സൈഡ്, ബോറോൺ, സൾഫർ സംയുക്തങ്ങൾ എന്നിവയും ഉൾപ്പെട്ടിരിക്കും. മാഗ്മയിൽനിന്നു നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെടുന്ന ധാതുക്കളുടെ പൊതുക്രമം ഇപ്രകാരമാണ്: 1. സിലിക്കാംശം വളരെ കുറഞ്ഞ അൽപസിലിക ധാതുക്കൾ (Basic minerals) -ഇരുമ്പ്, ചെമ്പ്, നിക്കൽ, ക്രോമിയം, പ്ലാറ്റിനം, ടൈറ്റാനിയം, കാർബൺ എന്നിവയുടെ ഓക്സൈഡുകളും സൾഫൈഡുകളും 2. മധ്യവർത്തി ധാതുക്കൾ (പകുതിയിലുള്ളത്ര സിലിക്കാംശം അടങ്ങിയവ) 3. അധിസിലിക ധാതുക്കൾ (Acid minerals സിലിക്കാംശം വളരെ കൂടിയവ). മാഗ്മയിൽനിന്ന് നേരിട്ടുള്ള ധാതുക്കളുടെ ക്രമബദ്ധമായ ഈ ക്രിസ്റ്റലീകരണ പ്രക്രിയയെ മാഗ്മാറ്റിക് വേർതിരിയൽ എന്നു വിളിക്കുന്നു.


=== കായാന്തരീകരണം മുഖേന ===
=== കായാന്തരീകരണം മുഖേന ===
ഉന്നത ഊഷ്മാവും മര്‍ദവുമുള്ള മാഗ്മയുടെ സാന്നിധ്യത്തില്‍ മാതൃശിലാ ധാതുക്കള്‍ പരിവര്‍ത്തനവിധേയമായി പുതിയ ധാതുക്കളും ശിലകളും രൂപംകൊള്ളുന്ന പ്രക്രിയയാണ് കായാന്തരീകരണം. കായാന്തരീകരണം സംസര്‍ഗിതമോ (contact metamorphism) പ്രാദേശികമോ (regional) ഗതികമോ (dynamic) ആകാം. പര്‍വതന പ്രക്രിയയുടെ ഫലമായി അനുഭവപ്പെടുന്ന ഉയര്‍ന്ന ചൂടും മര്‍ദവും ശിലകളിലെ ജലാംശവും സംയുക്തമായി പ്രവര്‍ത്തിക്കുമ്പോള്‍ നിരവധി ധാതുക്കള്‍ പുനഃക്രിസ്റ്റലീകരണത്തിനു വിധേയമാകുന്നു. ചുണ്ണാമ്പുകല്ല് മാര്‍ബിളും മണല്‍ക്കല്ല് ക്വാര്‍ട്ട്സെറ്റുമായി പരിവര്‍ത്തനപ്പെടുന്നത് ഗതിക കായാന്തരീകരണത്തിന് ഉത്തമോദാഹരണമാണ്. സ്ഫടിക സ്വാഭാവത്തോടുകൂടിയ അഭ്രം, ടാല്‍ക്ക്, ക്ലോറൈറ്റ്, ഹോണ്‍ബ്ളന്‍ഡ് എന്നീ ധാതുക്കള്‍ അടങ്ങിയ ഷിസ്റ്റും ചിലപ്പോള്‍ ഈ പ്രക്രിയയുടെ ഫലമായി രൂപംകൊള്ളാം. അപക്ഷയം, പ്രതിസ്ഥാപനം തുടങ്ങിയ പ്രക്രിയകള്‍ മൂലവും ചിലപ്പോള്‍ ധാതുക്കള്‍ രൂപംകൊള്ളാറുണ്ട്.
ഉന്നത ഊഷ്മാവും മർദവുമുള്ള മാഗ്മയുടെ സാന്നിധ്യത്തിൽ മാതൃശിലാ ധാതുക്കൾ പരിവർത്തനവിധേയമായി പുതിയ ധാതുക്കളും ശിലകളും രൂപംകൊള്ളുന്ന പ്രക്രിയയാണ് കായാന്തരീകരണം. കായാന്തരീകരണം സംസർഗിതമോ (contact metamorphism) പ്രാദേശികമോ (regional) ഗതികമോ (dynamic) ആകാം. പർവതന പ്രക്രിയയുടെ ഫലമായി അനുഭവപ്പെടുന്ന ഉയർന്ന ചൂടും മർദവും ശിലകളിലെ ജലാംശവും സംയുക്തമായി പ്രവർത്തിക്കുമ്പോൾ നിരവധി ധാതുക്കൾ പുനഃക്രിസ്റ്റലീകരണത്തിനു വിധേയമാകുന്നു. ചുണ്ണാമ്പുകല്ല് മാർബിളും മണൽക്കല്ല് ക്വാർട്ട്സെറ്റുമായി പരിവർത്തനപ്പെടുന്നത് ഗതിക കായാന്തരീകരണത്തിന് ഉത്തമോദാഹരണമാണ്. സ്ഫടിക സ്വാഭാവത്തോടുകൂടിയ അഭ്രം, ടാൽക്ക്, ക്ലോറൈറ്റ്, ഹോൺബ്ളൻഡ് എന്നീ ധാതുക്കൾ അടങ്ങിയ ഷിസ്റ്റും ചിലപ്പോൾ ഈ പ്രക്രിയയുടെ ഫലമായി രൂപംകൊള്ളാം. അപക്ഷയം, പ്രതിസ്ഥാപനം തുടങ്ങിയ പ്രക്രിയകൾ മൂലവും ചിലപ്പോൾ ധാതുക്കൾ രൂപംകൊള്ളാറുണ്ട്.


== ഭൗതിക ഗുണങ്ങളും അഭിജ്ഞാനവും ==
== ഭൗതിക ഗുണങ്ങളും അഭിജ്ഞാനവും ==
ധാതുക്കളുടെ ഭൗതിക ഗുണങ്ങളാണ് അവയെ തിരിച്ചറിയാന്‍ സഹായിക്കുന്ന പ്രധാന ഘടകം. പരിശീലനം സിദ്ധിച്ച ഒരു ധാതുവിജ്ഞാനിക്ക് ധാതുക്കളെ അവയുടെ ഭൗതിക ഗുണങ്ങളില്‍നിന്നുതന്നെ പെട്ടെന്ന് തിരിച്ചറിയാന്‍ കഴിയും. നിറം, ദ്യുതി (lusture), ചൂര്‍ണാഭ (streak), കാഠിന്യം (hardness), വിഭംഗം (fracture), വിദളനം (cleavage), ആപേഷിക ഘനത്വം (specific gravity) എന്നിവയാണ് ധാതുക്കളുടെ പ്രധാന ഭൌതിക ഗുണങ്ങള്‍. ക്രിസ്റ്റല്‍രൂപം, സംദീപ്തി, അപവര്‍ത്തനാങ്കം എന്നിവയ്ക്കു പുറമേ രാസപരീക്ഷണങ്ങളും ധാതുക്കളുടെ അഭിജ്ഞാനത്തിന് വ്യാപകമായി ഉപയോഗിക്കാറുണ്ട്.
ധാതുക്കളുടെ ഭൗതിക ഗുണങ്ങളാണ് അവയെ തിരിച്ചറിയാൻ സഹായിക്കുന്ന പ്രധാന ഘടകം. പരിശീലനം സിദ്ധിച്ച ഒരു ധാതുവിജ്ഞാനിക്ക് ധാതുക്കളെ അവയുടെ ഭൗതിക ഗുണങ്ങളിൽനിന്നുതന്നെ പെട്ടെന്ന് തിരിച്ചറിയാൻ കഴിയും. നിറം, ദ്യുതി (lusture), ചൂർണാഭ (streak), കാഠിന്യം (hardness), വിഭംഗം (fracture), വിദളനം (cleavage), ആപേഷിക ഘനത്വം (specific gravity) എന്നിവയാണ് ധാതുക്കളുടെ പ്രധാന ഭൌതിക ഗുണങ്ങൾ. ക്രിസ്റ്റൽരൂപം, സംദീപ്തി, അപവർത്തനാങ്കം എന്നിവയ്ക്കു പുറമേ രാസപരീക്ഷണങ്ങളും ധാതുക്കളുടെ അഭിജ്ഞാനത്തിന് വ്യാപകമായി ഉപയോഗിക്കാറുണ്ട്.


== നിറം ==
== നിറം ==
ധാതുക്കളെ തിരിച്ചറിയാന്‍ സഹായിക്കുന്ന പ്രധാന ഭൗതിക ഗുണമാണ് അവയുടെ നിറം. മിക്കപ്പോഴും ധാതുവിന്റെ രാസസംഘടനത്തിന്റെ പ്രതിഫലനമായിരിക്കും അതിന്റെ നിറം. ഉദാ. ചെമ്പയിരിന്റെ നിറം മിക്കപ്പോഴും അതിലെ കോപ്പര്‍ കാര്‍ബണേറ്റുകളുടെ സംയോജനാനുപാതത്തിന് അനുസൃതമായി പച്ചയോ നീലയോ ആയിരിക്കും. യുറേനിയം ധാതുക്കളില്‍ ഭൂരിഭാഗത്തിനും മഞ്ഞനിറമായിരിക്കുമ്പോള്‍ മാംഗനീസ് സിലിക്കേറ്റുകള്‍ക്കും കാര്‍ബണേറ്റുകള്‍ക്കും പാടലവര്‍ണവും ഇരുമ്പടങ്ങിയ സിലിക്കേറ്റുകള്‍ക്ക് പൊതുവേ ഇരുണ്ട പച്ചയോ കറുപ്പോ നിറവുമായിരിക്കും. എന്നാല്‍ ചിലപ്പോള്‍ ഒരു ധാതുതന്നെ പല നിറങ്ങളില്‍ പ്രകൃതിയില്‍ കണ്ടെന്നുവരാം (ഉദാ. ക്വാര്‍ട്ട്സ്). ഇത്തരം ധാതുക്കളെ തിരിച്ചറിയാന്‍ അവയുടെ നിറത്തെക്കാള്‍ ചൂര്‍ണാഭ(പൊടിയുടെ നിറം)യാണ് കൂടുതല്‍ സഹായിക്കുന്നത്. ധാതുവിന്റെ നിറവ്യത്യാസങ്ങള്‍ക്കനുസൃതമായി അതിന്റെ ചൂര്‍ണാഭയില്‍ മാറ്റം ഉണ്ടാകുന്നില്ല എന്നതാണ് ഇതിനു കാരണം. ഉദാ. ക്വാര്‍ട്ട്സിന്റെ ചൂര്‍ണാഭ എല്ലായ്പ്പോഴും വെള്ളയായിരിക്കും.
ധാതുക്കളെ തിരിച്ചറിയാൻ സഹായിക്കുന്ന പ്രധാന ഭൗതിക ഗുണമാണ് അവയുടെ നിറം. മിക്കപ്പോഴും ധാതുവിന്റെ രാസസംഘടനത്തിന്റെ പ്രതിഫലനമായിരിക്കും അതിന്റെ നിറം. ഉദാ. ചെമ്പയിരിന്റെ നിറം മിക്കപ്പോഴും അതിലെ കോപ്പർ കാർബണേറ്റുകളുടെ സംയോജനാനുപാതത്തിന് അനുസൃതമായി പച്ചയോ നീലയോ ആയിരിക്കും. യുറേനിയം ധാതുക്കളിൽ ഭൂരിഭാഗത്തിനും മഞ്ഞനിറമായിരിക്കുമ്പോൾ മാംഗനീസ് സിലിക്കേറ്റുകൾക്കും കാർബണേറ്റുകൾക്കും പാടലവർണവും ഇരുമ്പടങ്ങിയ സിലിക്കേറ്റുകൾക്ക് പൊതുവേ ഇരുണ്ട പച്ചയോ കറുപ്പോ നിറവുമായിരിക്കും. എന്നാൽ ചിലപ്പോൾ ഒരു ധാതുതന്നെ പല നിറങ്ങളിൽ പ്രകൃതിയിൽ കണ്ടെന്നുവരാം (ഉദാ. ക്വാർട്ട്സ്). ഇത്തരം ധാതുക്കളെ തിരിച്ചറിയാൻ അവയുടെ നിറത്തെക്കാൾ ചൂർണാഭ(പൊടിയുടെ നിറം)യാണ് കൂടുതൽ സഹായിക്കുന്നത്. ധാതുവിന്റെ നിറവ്യത്യാസങ്ങൾക്കനുസൃതമായി അതിന്റെ ചൂർണാഭയിൽ മാറ്റം ഉണ്ടാകുന്നില്ല എന്നതാണ് ഇതിനു കാരണം. ഉദാ. ക്വാർട്ട്സിന്റെ ചൂർണാഭ എല്ലായ്പ്പോഴും വെള്ളയായിരിക്കും.


== ദ്യുതി ==
== ദ്യുതി ==
ധാതുക്കളുടെ അഭിജ്ഞാനത്തെ സഹായിക്കുന്ന സവിശേഷമായ മറ്റൊരു ഭൌതിക ഗുണമാണ് ദ്യുതി. ധാതുപ്രതലത്തിന്റെ പ്രകാശ പ്രതിഫലന സ്വഭാവമാണ് അതിന്റെ ദ്യുതി. ദ്യുതിയെ പ്രധാനമായും ലോഹദ്യുതിയെന്നും അലോഹദ്യുതിയെന്നും രണ്ടായി വിഭജിച്ചിരിക്കുന്നു. അലോഹദ്യുതി വിവിധ വര്‍ണങ്ങളില്‍ ദൃശ്യമാണെങ്കിലും സ്ഫടികദ്യുതിയാണ് (പൊട്ടിയ സ്ഫടികത്തിന്റെ ശോഭ) സര്‍വസാധാരണം. റെസിനസ് ദ്യുതി (മരക്കറയുടെ ശോഭ-ഉദാ. സ്ഫാലറൈറ്റ്, സള്‍ഫര്‍), പവിഴ ദ്യുതി (ഉദാ. അപ്പോഫിലൈറ്റ്, ടാല്‍ക്), വജ്രദ്യുതി (ഉദാ. വജ്രം) തുടങ്ങിയവയും സാധാരണംതന്നെ. എന്നാല്‍ ശോഭയില്ലാത്ത ധാതുക്കളും പ്രകൃതിയില്‍ കാണപ്പെടുന്നുണ്ട്.
ധാതുക്കളുടെ അഭിജ്ഞാനത്തെ സഹായിക്കുന്ന സവിശേഷമായ മറ്റൊരു ഭൌതിക ഗുണമാണ് ദ്യുതി. ധാതുപ്രതലത്തിന്റെ പ്രകാശ പ്രതിഫലന സ്വഭാവമാണ് അതിന്റെ ദ്യുതി. ദ്യുതിയെ പ്രധാനമായും ലോഹദ്യുതിയെന്നും അലോഹദ്യുതിയെന്നും രണ്ടായി വിഭജിച്ചിരിക്കുന്നു. അലോഹദ്യുതി വിവിധ വർണങ്ങളിൽ ദൃശ്യമാണെങ്കിലും സ്ഫടികദ്യുതിയാണ് (പൊട്ടിയ സ്ഫടികത്തിന്റെ ശോഭ) സർവസാധാരണം. റെസിനസ് ദ്യുതി (മരക്കറയുടെ ശോഭ-ഉദാ. സ്ഫാലറൈറ്റ്, സൾഫർ), പവിഴ ദ്യുതി (ഉദാ. അപ്പോഫിലൈറ്റ്, ടാൽക്), വജ്രദ്യുതി (ഉദാ. വജ്രം) തുടങ്ങിയവയും സാധാരണംതന്നെ. എന്നാൽ ശോഭയില്ലാത്ത ധാതുക്കളും പ്രകൃതിയിൽ കാണപ്പെടുന്നുണ്ട്.


== ചൂർണാഭ ==
== ചൂര്‍ണാഭ ==
ധാതുപൊടിയുടെ നിറമാണ് ചൂര്‍ണാഭ. പരുപരുത്ത പോര്‍സെലിന്‍ പ്ലേറ്റില്‍ (സ്ട്രീക്ക് പ്ലേറ്റ്) ചൂര്‍ണാഭ നിര്‍ണയിക്കേണ്ട ധാതു അമര്‍ത്തി ഉരസിയാണ് അതിന്റെ പൊടിയുടെ നിറം പരിശോധിക്കുന്നത്. സ്ട്രീക്ക് പ്ലേറ്റിന്റെ കാഠിന്യം ഏഴ് ആയതിനാല്‍ മോവിന്റെ കാഠിന്യ മാപക പ്രകാരം ഏഴിനു താഴെ കാഠിന്യമുള്ള ധാതുക്കളുടെ ചൂര്‍ണാഭ മാത്രമേ സ്ട്രീക്ക് പ്ളേറ്റ് ഉപയോഗിച്ച് നിര്‍ണയിക്കാന്‍ കഴിയൂ.
ധാതുപൊടിയുടെ നിറമാണ് ചൂർണാഭ. പരുപരുത്ത പോർസെലിൻ പ്ലേറ്റിൽ (സ്ട്രീക്ക് പ്ലേറ്റ്) ചൂർണാഭ നിർണയിക്കേണ്ട ധാതു അമർത്തി ഉരസിയാണ് അതിന്റെ പൊടിയുടെ നിറം പരിശോധിക്കുന്നത്. സ്ട്രീക്ക് പ്ലേറ്റിന്റെ കാഠിന്യം ഏഴ് ആയതിനാൽ മോവിന്റെ കാഠിന്യ മാപക പ്രകാരം ഏഴിനു താഴെ കാഠിന്യമുള്ള ധാതുക്കളുടെ ചൂർണാഭ മാത്രമേ സ്ട്രീക്ക് പ്ളേറ്റ് ഉപയോഗിച്ച് നിർണയിക്കാൻ കഴിയൂ.


== കാഠിന്യം ==
== കാഠിന്യം ==
ധാതുക്കളുടെ പ്രധാന ഭൗതിക ഗുണങ്ങളില്‍ ഒന്നാണ് അവയുടെ കാഠിന്യം. മോവിന്റെ കാഠിന്യ മാപകത്തിലെ ധാതുക്കളുമായി കാഠിന്യം നിര്‍ണയിക്കേണ്ട ധാതുവിനെ അമര്‍ത്തി ഉരസി താരതമ്യം ചെയ്താണ് പൊതുവേ ധാതുക്കളുടെ കാഠിന്യം നിര്‍ണയിക്കുന്നത്. മോവിന്റെ കാഠിന്യ മാപകം ഇപ്രകാരമാണ്; ടാല്‍ക്ക്-1, ജിപ്സം-2, കാല്‍സൈറ്റ്-3, ഫ്ലൂറൈറ്റ്-4, അപ്പറൈറ്റ്-5, ഒര്‍തോക്ലേസ്-6, ക്വാര്‍ട്ട്സ്-7, ടോപാസ്-8, കൊറണ്ടം-9, ഡയമണ്ട്-10. ഉപസ്ഥിത മേഖലകളില്‍നിന്ന് ധാതുക്കളെ ശേഖരിക്കുന്നവര്‍ നഖം, (കാഠിന്യം-2.5), കത്തി (കാഠിന്യം 5.5) എന്നിവ ഉപയോഗിച്ച് ധാതുപ്രതലങ്ങളില്‍ പോറല്‍ ഏല്പിച്ചും അവയുടെ കാഠിന്യം നിര്‍ണയിക്കാറുണ്ട്. കാഠിന്യം വളരെ കുറഞ്ഞ ധാതുക്കള്‍ പൊതുവേ വഴുവഴുപ്പ് പ്രദര്‍ശിപ്പിക്കുമ്പോള്‍ 2-ല്‍ കൂടുതല്‍ കാഠിന്യമുള്ള ധാതുക്കളെ നഖംകൊണ്ട് പോറല്‍ ഏല്പിക്കാന്‍ കഴിയുന്നു.
ധാതുക്കളുടെ പ്രധാന ഭൗതിക ഗുണങ്ങളിൽ ഒന്നാണ് അവയുടെ കാഠിന്യം. മോവിന്റെ കാഠിന്യ മാപകത്തിലെ ധാതുക്കളുമായി കാഠിന്യം നിർണയിക്കേണ്ട ധാതുവിനെ അമർത്തി ഉരസി താരതമ്യം ചെയ്താണ് പൊതുവേ ധാതുക്കളുടെ കാഠിന്യം നിർണയിക്കുന്നത്. മോവിന്റെ കാഠിന്യ മാപകം ഇപ്രകാരമാണ്; ടാൽക്ക്-1, ജിപ്സം-2, കാൽസൈറ്റ്-3, ഫ്ലൂറൈറ്റ്-4, അപ്പറൈറ്റ്-5, ഒർതോക്ലേസ്-6, ക്വാർട്ട്സ്-7, ടോപാസ്-8, കൊറണ്ടം-9, ഡയമണ്ട്-10. ഉപസ്ഥിത മേഖലകളിൽനിന്ന് ധാതുക്കളെ ശേഖരിക്കുന്നവർ നഖം, (കാഠിന്യം-2.5), കത്തി (കാഠിന്യം 5.5) എന്നിവ ഉപയോഗിച്ച് ധാതുപ്രതലങ്ങളിൽ പോറൽ ഏല്പിച്ചും അവയുടെ കാഠിന്യം നിർണയിക്കാറുണ്ട്. കാഠിന്യം വളരെ കുറഞ്ഞ ധാതുക്കൾ പൊതുവേ വഴുവഴുപ്പ് പ്രദർശിപ്പിക്കുമ്പോൾ 2- കൂടുതൽ കാഠിന്യമുള്ള ധാതുക്കളെ നഖംകൊണ്ട് പോറൽ ഏല്പിക്കാൻ കഴിയുന്നു.


== വിഭംഗം ==
== വിഭംഗം ==
വിദളനദിശ (Cleavage direction) വേറിട്ട് പൊട്ടാനുള്ള ധാതുവിന്റെ സ്വഭാവമാണ് വിഭംഗം. വിഭംഗ പ്രതല സ്വഭാവത്തെ അടിസ്ഥാനമാക്കി വിഭംഗത്തെ ശംഖാഭം (ഉദാ. സ്ഫടികം, ക്വാര്‍ട്ട്സ്) തന്തുമയം (fibrous), ശകലീഭവം (splintery), ക്രമരഹിതം എന്നിങ്ങനെ വിഭജിക്കുന്നു.
വിദളനദിശ (Cleavage direction) വേറിട്ട് പൊട്ടാനുള്ള ധാതുവിന്റെ സ്വഭാവമാണ് വിഭംഗം. വിഭംഗ പ്രതല സ്വഭാവത്തെ അടിസ്ഥാനമാക്കി വിഭംഗത്തെ ശംഖാഭം (ഉദാ. സ്ഫടികം, ക്വാർട്ട്സ്) തന്തുമയം (fibrous), ശകലീഭവം (splintery), ക്രമരഹിതം എന്നിങ്ങനെ വിഭജിക്കുന്നു.


== വിദളനം ==
== വിദളനം ==
ധാതുക്കളെ തിരിച്ചറിയാന്‍ സഹായിക്കുന്ന മറ്റൊരു പ്രധാന ഭൗതിക ഗുണമാണ് അതിന്റെ വിദളനം. അറ്റോമിക പ്രതലത്തിന് (atomic planes) സമാന്തരമായി പിളരുവാനുള്ള ചില ധാതുക്കളുടെ പ്രവണതയാണിത്. വിദളനം മിക്കപ്പോഴും നിയതമോ സാധ്യമായ ക്രിസ്റ്റല്‍ മുഖങ്ങള്‍ക്ക് സമാന്തരമോ ആയിരിക്കും. ധാതുക്കളുടെ പിളരാനുള്ള കഴിവും അതിന്റെ ദിശയുമാണ് വിദളനത്തെ നിര്‍വചിക്കുന്ന പ്രധാന ഘടകങ്ങള്‍. (ഉദാ. ആധാര വിദളനം-ആധാര പ്രതലത്തിന് സമാന്തരമായ വിഭജനം). ആപേഷിക ഘനത്വം, അപവര്‍ത്തനാങ്കം, സംദീപ്തി, ക്രിസ്റ്റല്‍ രൂപം, രാസസ്വഭാവങ്ങള്‍ തുടങ്ങിയവയും ധാതുക്കളെ തിരിച്ചറിയാന്‍ സഹായിക്കുന്നു. ധാതുവിന്റെ രാസസംഘടനവും ക്രിസ്റ്റല്‍ ഘടനയുമാണ് അതിന്റെ ആപേക്ഷിക ഘനത്വത്തെ നിര്‍ണയിക്കുന്ന പ്രധാന ഘടകങ്ങള്‍. ധാതുക്കളില്‍ അടങ്ങിയിരിക്കുന്ന മൂലകങ്ങളുടെ ഭാരവ്യത്യാസത്തിനനുസൃതമായി അവയുടെ ആപേക്ഷിക ഘനത്വം വ്യത്യാസപ്പെടുന്നു.
ധാതുക്കളെ തിരിച്ചറിയാൻ സഹായിക്കുന്ന മറ്റൊരു പ്രധാന ഭൗതിക ഗുണമാണ് അതിന്റെ വിദളനം. അറ്റോമിക പ്രതലത്തിന് (atomic planes) സമാന്തരമായി പിളരുവാനുള്ള ചില ധാതുക്കളുടെ പ്രവണതയാണിത്. വിദളനം മിക്കപ്പോഴും നിയതമോ സാധ്യമായ ക്രിസ്റ്റൽ മുഖങ്ങൾക്ക് സമാന്തരമോ ആയിരിക്കും. ധാതുക്കളുടെ പിളരാനുള്ള കഴിവും അതിന്റെ ദിശയുമാണ് വിദളനത്തെ നിർവചിക്കുന്ന പ്രധാന ഘടകങ്ങൾ. (ഉദാ. ആധാര വിദളനം-ആധാര പ്രതലത്തിന് സമാന്തരമായ വിഭജനം). ആപേഷിക ഘനത്വം, അപവർത്തനാങ്കം, സംദീപ്തി, ക്രിസ്റ്റൽ രൂപം, രാസസ്വഭാവങ്ങൾ തുടങ്ങിയവയും ധാതുക്കളെ തിരിച്ചറിയാൻ സഹായിക്കുന്നു. ധാതുവിന്റെ രാസസംഘടനവും ക്രിസ്റ്റൽ ഘടനയുമാണ് അതിന്റെ ആപേക്ഷിക ഘനത്വത്തെ നിർണയിക്കുന്ന പ്രധാന ഘടകങ്ങൾ. ധാതുക്കളിൽ അടങ്ങിയിരിക്കുന്ന മൂലകങ്ങളുടെ ഭാരവ്യത്യാസത്തിനനുസൃതമായി അവയുടെ ആപേക്ഷിക ഘനത്വം വ്യത്യാസപ്പെടുന്നു.


[[വര്‍ഗ്ഗം:രസതന്ത്രം]]
[[വർഗ്ഗം:രസതന്ത്രം]]
[[വര്‍ഗ്ഗം:ഭൂമിശാസ്ത്രം]]
[[വർഗ്ഗം:ഭൂമിശാസ്ത്രം]]


[[af:Mineraal]]
[[af:Mineraal]]

05:50, 11 ഏപ്രിൽ 2010-നു നിലവിലുണ്ടായിരുന്ന രൂപം

ധാതു എന്ന വാക്കാൽ വിവക്ഷിക്കാവുന്ന ഒന്നിലധികം കാര്യങ്ങളുണ്ട്. അവയെക്കുറിച്ചറിയാൻ ധാതു (വിവക്ഷകൾ) എന്ന താൾ കാണുക. ധാതു (വിവക്ഷകൾ)

അകാർബണിക (inorganic) പ്രക്രിയയുടെ ഫലമായി രൂപംകൊള്ളുന്നതും നിയതമായ അറ്റോമിക ഘടന, രാസസംഘടനം, സ്ഥിരം അഥവാ ഒരു നിശ്ചിത പരിധിവരെ വ്യത്യാസപ്പെടാവുന്ന ഭൗതികഗുണം എന്നിവയോടുകൂടിയതുമായ പ്രാകൃതിക പദാർഥമാണു് ധാതു (mineral) എന്നറിയപ്പെടുന്നതു് . ഖനിജം എന്നും ഇത് അറിയപ്പെടുന്നു. ഒരൊറ്റ മൂലകമായോ (ഉദാ. ചെമ്പ്, സ്വർണം, വെള്ളി) സംയുക്തങ്ങളായോ (ഉദാ. സോഡിയം ക്ലോറൈഡ് (NaCl), കാൽസ്യം കാർബണേറ്റ് (CaCO3)) ധാതുക്കൾ പ്രകൃതിയിൽ കാണപ്പെടുന്നു. ഭുവല്കത്തിൽ മാത്രമല്ല ചന്ദ്രൻ, ചൊവ്വ, ഉൽക്കകൾ തുടങ്ങിയ ജ്യോതിർവസ്തുക്കളിലും ധാതുക്കൾ കാണപ്പെടുന്നുണ്ട്. അജൈവ സ്വഭാവമാണ് ധാതുക്കളുടെ മുഖ്യ സവിശേഷത.

ധാതുക്കളുടെ പരമ്പരാഗതനിർവചനപ്രകാരം പ്രകൃത്യാ കാണപ്പെടുന്ന അകാർബണിക പദാർഥങ്ങളെ മാത്രമേ ഇതിൽ ഉൾപ്പെടുത്തിയിട്ടുള്ളൂ. എന്നാൽ ഇപ്പോൾ കാർബണിക പദാർഥങ്ങളായ കൽക്കരി, പ്രകൃതിവാതകം, പെട്രോളിയം എന്നിവയെ പരിമിതാർഥത്തിൽ ധാതുക്കളായി പരിഗണിക്കാറുണ്ട്. രൂപസാദൃശ്യങ്ങളിലും മറ്റും ധാതുക്കളോടു സാമ്യമുണ്ടെങ്കിലും മനുഷ്യ നിർമിത പദാർഥങ്ങളെ (ഉദാ. കൃത്രിമ വജ്രം) ഒരിക്കലും ധാതുക്കളുടെ പട്ടികയിൽ ഉൾപ്പെടുത്താറില്ല. അഗ്നിപർവതജന്യ സ്ഫടികം, പവിഴം, ജന്തുക്കളുടെ അസ്ഥികൾ, തോടുകൾ എന്നിവയും ധാതുക്കളുടെ നിർവചന പരിധിയിൽ ഉൾപ്പെടുന്നില്ല. ധാതുക്കൾ പൊതുവേ വാതകം, ശിലാദ്രവം, ജലീയദ്രാവകം, മറ്റു ധാതുക്കൾ എന്നിവയിൽനിന്ന് രൂപപ്പെടുന്നവയാണ്.

രൂപവും ഘടനയും

സ്വതന്ത്രമായി രൂപംകൊള്ളുന്ന ധാതുക്കളുടെ പ്രത്യേകതയാണ് അവയുടെ ക്രിസ്റ്റൽ മുഖങ്ങൾ. 18-19 ശ.-ങ്ങളിൽ നടന്ന ധാതുക്കളുടെ ക്രിസ്റ്റൽ രൂപങ്ങളെ സംബന്ധിച്ച പഠനങ്ങൾ ധാതുവിജ്ഞാനീയത്തിന്റെ വളർച്ചയ്ക്ക് നിർണായകമായ സംഭാവനകൾ നല്കി. തുടർന്ന് ഓരോ ധാതുവിനും നിശ്ചിത മുഖാന്തർ കോണുകൾ (interfacial angle) ആണ് ഉള്ളതെന്ന വസ്തുതയും സ്ഥിരീകരിക്കപ്പെട്ടു. 1830-കളിൽ ക്രിസ്റ്റൽ മുഖങ്ങൾക്കിടയിലെ പ്രതിസമതാ ബന്ധങ്ങളുടെ (Symmetry relationship) അടിസ്ഥാനത്തിൽ ക്രിസ്റ്റലുകളെ 32 ഗണങ്ങളും ഐസൊമെട്രിക്, മൊണോക്ളിനിക്, ട്രൈക്ളിനിക്, ഒർതോറോംബിക്, ട്രൈഗണൽ, ഹെക്സഗണൽ, ടെട്രഗണൽ എന്നിങ്ങനെ ഏഴ് ക്രിസ്റ്റൽ വ്യൂഹങ്ങളും ആയി വിഭജിച്ചു.

രാസസംഘടനം (Chemical composition)

വ്യക്തമായ സൂത്രസംജ്ഞയാൽ (formula) സൂചിപ്പിക്കാൻ കഴിയുന്ന നിയതമായ രാസസംഘടനമാണ് ധാതുക്കളുടെ മുഖ്യ സവിശേഷത. ധാതുക്കളുടെ രാസ സംയോഗത്തിലെ ഘടകമൂലകങ്ങളുടെ എണ്ണത്തിനും അനുപാതത്തിനും അനുസൃതമായി സൂത്രസംജ്ഞകൾ ലഘുവോ സങ്കീർണമോ ആകുന്നു. ധാതുവിന്റെ രാസസംഘടനം നിയതമെങ്കിലും സ്ഥിരമാകണമെന്നില്ല. മൂലകങ്ങളുടെ ആദേശമാണ് ഇതിന് നിദാനം. മാഗ്നസൈറ്റിൽ മഗ്നീഷ്യത്തിനുപകരം ഇരുമ്പും, സിഡെറൈറ്റിൽ ഇരുമ്പിനു പകരം മഗ്നീഷ്യവും കാണപ്പെടുന്നത് ഇത്തരം ആദേശ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്.

നാമകരണം

പല ധാതുക്കളും പ്രാചീനമായ പേരുകളിലാണ് അറിയപ്പെടുന്നത്. എ.ഡി. 1-ാം ശ.-ത്തിൽ ധാതുവിജ്ഞാനീയത്തിന് അമൂല്യമായ സംഭാവനകൾ നല്കിയ റോമൻ പ്രകൃതി ശാസ്ത്രജ്ഞനായ പ്ളിനി നിരവധി പ്രാകൃതിക മൂലകങ്ങളുടെയും അയിരുധാതുക്കളുടെയും രത്നങ്ങളുടെയും ഒരു പ്രാഥമിക പട്ടിക തയ്യാറാക്കി പ്രസിദ്ധപ്പെടുത്തിയിരുന്നു. 18-ാം ശ.-ത്തിന്റെ അവസാനത്തോടെ ഓരോ ധാതുവർഗത്തിനും പ്രത്യേകം പേര് നല്കുന്ന സമ്പ്രദായം നിലവിൽവന്നു.

മിക്ക ധാതുക്കൾക്കും അവ കണ്ടെത്തിയവരാണ് പേരുകൾ നല്കിയിട്ടുള്ളത്. ധാതുവിന്റെ നിറം, ക്രിസ്റ്റൽ ഘടന, ആപേക്ഷിക ഘനത്വം എന്നിവയെ സൂചിപ്പിക്കുന്ന ഗ്രീക്ക് അഥവാ ലാറ്റിൻ പദങ്ങളിൽനിന്നാണ് മിക്ക ധാതുനാമങ്ങളും നിഷ്പന്നമായിട്ടുള്ളത്. എന്നാൽ ചില ധാതുനാമങ്ങൾ അവയുടെ രാസസംഘടനത്തെ സൂചിപ്പിക്കുന്ന പദങ്ങളിൽനിന്നാണ് ഉരുത്തിരിഞ്ഞിട്ടുള്ളത്. ആധുനിക നാമകരണ രീതിയിൽ '-ഐറ്റ്' ('-ite') എന്ന പര പ്രത്യയം (suffix) ധാതുനാമത്തിനൊപ്പം സാധാരണമാണ്. പേരിന്റെ ആദ്യഭാഗം ധാതുവിന്റെ നിറം (ഉദാ. ആൽബൈറ്റ്), ആപേക്ഷിക ഘനത്വം (ഉദാ. ബെറൈറ്റ്) രാസസംഘടനം തുടങ്ങിയ സവിശേഷതകളെ സൂചിപ്പിക്കുന്ന ഗ്രീക്ക് അഥവാ ലാറ്റിൻ പദത്തിലായിരിക്കും ആരംഭിക്കുക. ഉദാ. വെളുപ്പ് എന്നർഥമുള്ള ആൽബസ് എന്ന ലാറ്റിൻ പദത്തിൽനിന്നാണ് അൽബൈറ്റ് എന്ന ധാതുനാമം നിഷ്പന്നമായിട്ടുള്ളത്. വിദളനത്തെ (cleavage) ആസ്പദമാക്കിയാണ് നാമകരണമെങ്കിൽ '- ക്ലേസ്' ('-clase') എന്നും (ഉദാ. ഓർത്തോക്ലേസ്), ശല്കാവസ്ഥയെ (flaky nature) അടിസ്ഥാനമാക്കിയാണെങ്കിൽ '- ഫിലൈറ്റ്' ('phyllite') എന്നും (ഉദാ. പൈറോഫിലൈറ്റ്) പര പ്രത്യയങ്ങൾ ചേർക്കുന്നു.

സ്ഥലങ്ങളുടെയും വ്യക്തികളുടെയും പേരുകളും ധാതുക്കളുടെ നാമകരണത്തിന് അടിസ്ഥാനമാക്കാറുണ്ട്. സ്ഥലനാമങ്ങളുമായി ബന്ധപ്പെട്ട ധാതുനാമങ്ങൾ മിക്കവയും അവ ആദ്യം കണ്ടെത്തിയ സ്ഥലത്തെയായിരിക്കും സൂചിപ്പിക്കുക. ഉദാ. ന്യൂ ജെഴ്സിയിലെ ഫ്രാങ്ക്ളിൻ എന്ന സ്ഥലത്തെ സൂചിപ്പിക്കുന്ന ഫ്രാങ്ക്ളിനൈറ്റ്, സ്പെയിനിലെ അരഗൊൺ (Aragon) എന്ന സ്ഥലനാമത്തിൽ നിന്ന് നിഷ്പന്നമായ അരഗൊണൈറ്റ് തുടങ്ങിയവ. പ്രസിദ്ധരായ ധാതുവിജ്ഞാനികൾ, ധാതു സമ്പാദകർ, ഖനി ഉടമകൾ തുടങ്ങിയവരുടെ പേരുകളും ചിലപ്പോൾ ധാതുനാമങ്ങൾക്ക് ഉപോദ്ബലകമായി സ്വീകരിച്ചിട്ടുണ്ട്. 1960-ൽ നിലവിൽവന്ന ധാതുക്കളുടെ അന്തർദേശീയ നാമകരണ സമിതി ധാതുക്കളുടെ ശാസ്ത്രീയ നാമകരണം കൂടുതൽ ക്രമബദ്ധമാക്കി.

ഉപയോഗം

ആധുനിക മനുഷ്യജീവിതത്തിന്റെ എല്ലാ തലങ്ങളിലും ധാതുക്കളുടെയും അവയിൽനിന്നു നിഷ്പന്നമാകുന്ന പദാർഥങ്ങളുടെയും ഉപയോഗം അത്യന്താപേഷിതമാണ്. ഉപയോഗത്തിന്റെ അടിസ്ഥാനത്തിൽ ധാതുക്കളെ രണ്ട് വിപുല വിഭാഗങ്ങളായി വിഭജിച്ചിരിക്കുന്നു;

  1. അയിര് ധാതുക്കൾ,
  2. വ്യാവസായിക ധാതുക്കൾ.

ലോഹഖനനത്തിന്റെ സ്രോതസ്സുകളായ ധാതുക്കളാണ് ആദ്യ വിഭാഗത്തിൽ (ഉദാ. ചാൽക്കോപൈറൈറ്റ്-ചെമ്പിന്റെ അയിര്). ഒരു പ്രത്യേക ലോഹത്തിനുപരി വ്യാവസായികാവശ്യത്തിനുള്ള അസംസ്കൃത വസ്തുക്കൾ പ്രദാനം ചെയ്യാൻ കഴിയുന്ന അഥവാ വ്യവസായത്തിൽ അസംസ്കൃത വസ്തുക്കളായി ഉപയോഗിക്കാൻ കഴിയുന്ന ധാതുക്കളാണ് വ്യാവസായിക ധാതുക്കൾ. ചില ധാതുക്കൾ പ്രകൃതിയിൽനിന്നു ലഭിക്കുന്ന അവസ്ഥയിൽത്തന്നെ വ്യാവസായികാവശ്യങ്ങൾക്ക് ഉപയോഗിക്കുമ്പോൾ (ഉദാ. കളിമണ്ണ്) മറ്റു ചിലത് വിവിധ തരം സംസ്കരണ പ്രക്രിയകൾക്കു ശേഷമാണ് ഉപയോഗിക്കുന്നത്.

വർഗ്ഗീകരണം

പല തരത്തിലുള്ള ധാതു വർഗീകരണ സമ്പ്രദായങ്ങൾ നിലവിലുണ്ടെങ്കിലും ധാതുക്കളുടെ രാസ സംഘടനത്തെ അടിസ്ഥാനമാക്കിയുള്ള വർഗീകരണത്തിനാണ് കൂടുതൽ പ്രാമുഖ്യം. സിസ്റ്റം ഒഫ് മിനറോളജിയുടെ കർത്താവായ ജെയിംസ് ഡ്വെയ്റ്റ് ഡാനയാണ് ഈ വർഗീകരണ സമ്പ്രദായം അവതിപ്പിച്ചത്. ഈ സമ്പ്രദായപ്രകാരം ധാതുക്കളെ 17 ക്ലാസ്സുകളായി വർഗീകരിച്ചിരിക്കുന്നു. 1. പ്രാകൃതിക മൂലകങ്ങൾ, 2. സൾഫൈഡുകൾ, 3. ഓക്സൈഡുകൾ, 4. ഹൈഡ്രോക്സൈഡുകൾ, 5. ഹാലൈഡുകൾ, 6. കാർബണേറ്റുകൾ, 7. നൈട്രേറ്റുകൾ, 8. ബോറേറ്റുകൾ, 9. അയഡേറ്റുകൾ, 10. സൾഫേറ്റുകൾ 11. ക്രോമേറ്റുകൾ, 12. മോളിബ്ഡേറ്റുകൾ, 13. ടങ്സ്റ്റേറ്റുകൾ, 14. ഫോസ്ഫേറ്റുകൾ, 15. ആർസനേറ്റുകൾ, 16. വനേഡുകൾ, 17. സിലിക്കേറ്റുകൾ എന്നിവയാണ് അവ. ഇവയിൽ സിലിക്കേറ്റുകളാണ് ഭൂവല്കത്തിൽ ഏറ്റവും കൂടുതൽ കാണപ്പെടുന്നത്.

രാസസംഘടനത്തെയാണ് ധാതുവർഗീകരണത്തിന്റെ അടിസ്ഥാന മാപകമായി പരിഗണിക്കുന്നതെങ്കിലും ഉദ്ഭവം, ഉപസ്ഥിതി, ചില ഭൗതിക ഗുണങ്ങൾ അഥവാ ഉപയോഗം എന്നിവയും ചിലപ്പോൾ ധാതുക്കളുടെ വർഗീകരണത്തിന് നിദാനമാകാറുണ്ട്. ഉദ്ഭവത്തിന്റെ അടിസ്ഥാനത്തിൽ ധാതുക്കളെ പ്രാഥമിക ധാതുക്കൾ (Primary minerals) എന്നും മധ്യമ ധാതുക്കൾ (Secondary minerals) എന്നും രണ്ടായി വിഭജിച്ചിരിക്കുന്നു. മാഗ്മയിൽനിന്ന് നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെടുന്നവയാണ് പ്രാഥമിക ധാതുക്കൾ; അല്ലാത്തവ മധ്യമ ധാതുക്കളും. ആഗ്നേയ-കായാന്തരിത-അവസാദ ശിലകളിൽ മുഖ്യ ഘടകങ്ങളായി വർത്തിക്കുന്ന ധാതുക്കളെ ശിലാനിർമിത ധാതുക്കൾ എന്നു വിളിക്കുന്നു (ഉദാ. ക്വാർട്ട്സ്, ഫെൽസ്പാർ, അഭ്രം തുടങ്ങിയവ). അവശ്യ ധാതുക്കൾ അഥവാ മൂല ധാതുക്കൾ (essential minerals) എന്നും ഇവ അറിയപ്പെടുന്നു. എന്നാൽ ശിലകളിൽ നാമമാത്രമായി മാത്രം കാണപ്പെടുന്ന ചില ധാതുക്കളുണ്ട്. ഇവ ഉപ ധാതുക്കൾ (accessory minerals) എന്ന പേരിൽ അറിയപ്പെടുന്നു. (ഉദാ. പൈറൈറ്റ്, സിർക്കോൺ തുടങ്ങിയവ.) സമരൂപികൾ അഥവാ ഐസോമോർഫസുകൾ ഉൾപ്പെട്ട ധാതുഗണമാണ് ഐസോമോർഫസ് ഗ്രൂപ്പ് (ഉദാ. ഗാർണെറ്റ് ഗ്രൂപ്പ്). രാസ-ഭൌതിക ഗുണധർമങ്ങളിൽ പരസ്പര ബന്ധമുള്ള ധാതുക്കളെ ധാതുകുടുംബങ്ങളായി വിഭജിക്കുന്ന സമ്പ്രദായവും നിലവിലുണ്ട്. എന്നാൽ ഇവ സമരൂപികളാകണമെന്നില്ല.

സാമ്പത്തിക പ്രാധാന്യമുള്ള ധാതുക്കളെ പൊതുവേ സാമ്പത്തിക ഖനിജങ്ങൾ (economic minerals) എന്നു വിളിക്കുന്നു. ലോഹ, അലോഹ, രത്ന ധാതുക്കളാണ് പ്രധാനമായും സാമ്പത്തിക ധാതുക്കളുടെ പട്ടികയിൽ ഉൾപ്പെടുന്നത്. രാസികവും ഭൗതികവുമായ അപക്ഷയ പ്രക്രിയകളെ അതിജീവിക്കാൻ കഴിയുന്ന ധാതുക്കളെ പൊതുവേ ദൃഢ ധാതുക്കൾ (Stable minerals) എന്നു വിളിക്കുന്നു. കാഠിന്യം വളരെ കൂടിയ ഇത്തരം ധാതുക്കൾക്ക് അലേയ സ്വഭാവവും വളരെ കൂടുതലായിരിക്കും. നദീതീരങ്ങളിലും കടൽത്തീരങ്ങളിലും മറ്റും പ്ലേയ്സർ (Placer) നിക്ഷേപങ്ങളായി കാണപ്പെടുന്ന ധാതുക്കൾക്ക് ഘന ധാതുക്കൾ (Heavy minerals) എന്നാണ് പേര്. ഉയർന്ന ആപേക്ഷിക ഘനത്വമാണ് ഇവയുടെ മുഖ്യ സവിശേഷത. പരിവർത്തന വിധേയമാകാത്ത ശിലാഘടകങ്ങളെയും ചിലപ്പോൾ ധാതുക്കൾ എന്നു വിശേഷിപ്പിക്കാറുണ്ട്. ഇവ പൊതുവേ അവിശിഷ്ട ധാതുക്കൾ (detrial minerals) എന്നറിയപ്പെടുന്നു. ഉദ്ഭവസ്ഥാനത്തിന്റെ അടിസ്ഥാനത്തിലും ചിലപ്പോൾ ധാതുക്കളെ വർഗീകരിക്കാറുണ്ട്.

രൂപവത്കരണം

നാല് വ്യത്യസ്ത പ്രക്രിയകളിലൂടെയാണ് പ്രധാനമായും ധാതുക്കളുടെ രൂപവത്കരണം സംഭവിക്കുന്നത്.

  1. അഗ്നിപർവതജന്യ വാതകങ്ങളിൽനിന്ന് നേരിട്ട് ഘനീഭവിച്ച് (sublimation),
  2. ജലീയ പൂരിതലായനികളിൽനിന്ന് ക്രിസ്റ്റലീ കരിക്കപ്പെട്ട്,
  3. മാഗ്മയിൽ നിന്ന് നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെട്ട്,
  4. കായാന്തരീകരണം മുഖേന.

അഗ്നിപർവതജന്യ വാതകങ്ങളിൽനിന്ന്

അഗ്നിപർവത വിസ്ഫോടന സമയത്ത് അഗ്നിപർവത നാളികൾ അഥവാ ഫ്യൂമറോളുകളിൽ (Fumaroles) നിന്ന് ബഹിർഗമിക്കപ്പെടുന്ന വാതകങ്ങളുടെ ഘനീഭവനം (condensation) ചിലപ്പോൾ പരിമിത അളവിൽ ധാതുക്കളുടെ രൂപവത്കരണത്തിന് കാരണമാകാറുണ്ട്. സലംമൊണിക് (NH4Cl), സൾഫർ (S), ബോറിക് ആസിഡ് (H3BO3FeCl3) എന്നിവ നീരാവിയുമായി പ്രവർത്തിക്കുന്നതിന്റെ ഫലമായി പരിമിത അളവിൽ ഹിമറ്റൈറ്റ് രൂപംകൊള്ളുന്നത് ഇത്തരം ധാതുരൂപവത്കരണ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്.

FeCl3(ബാഷ്പം) + H2O(നീരാവി) → Fe2O3 + HCl 

ജലീയ പൂരിതലായനികളിൽനിന്ന്

ധാതുരൂപവത്കരണത്തിന്റെ ഒരു പ്രധാന സ്രോതസ്സാണ് ജലീയ പൂരിത ദ്രാവകം. ജലീയ ദ്രാവകത്തിൽ ലയിച്ചുചേർന്നിരിക്കുന്ന ധാതവ പദാർഥങ്ങൾ വിവിധ പ്രക്രിയകളിലൂടെ ഊറലിനു വിധേയമാകുമ്പോഴാണ് ധാതു രൂപവത്കരണം സംഭവിക്കുന്നത്. ലായക പദാർഥങ്ങളുടെ അക്ഷയ ഖനിയായ സമുദ്രജലം ബാഷ്പീകരണത്തിനു വിധേയമാകുന്നതിന്റെ ഫലമായി അതിൽ ലയിച്ചുചേർന്നിരിക്കുന്ന ധാതവ പദാർഥങ്ങൾ ഖരപദാർഥങ്ങളിലായി അടിയുന്നത് (ഉദാ. ഉപ്പ്, ജിപ്സം) ഈ പ്രക്രിയയ്ക്ക് ഉദാഹരണമാണ്. ബാഷ്പീകരണ പ്രക്രിയയുടെ തോത് വർദ്ധിക്കുന്നതിന് ആനുപാതികമായി മഗ്നീഷ്യം (Mg), പൊട്ടാസിയം (K) തുടങ്ങിയ ധാതുക്കളുടെ ഊറൽ സംഭവിക്കുന്നു.

ഉഷ്ണ നീരുറവകളും ഗെയ്സെറുകളും (Geysers) കാണപ്പെടുന്ന പ്രദേശങ്ങളിൽ ഉഷ്ണജലം ഉന്നത മർദത്തിന്റെ സാന്നിധ്യത്തിൽ താഴെത്തട്ടിലുള്ള ശിലാപദാർഥങ്ങളെ ലയിപ്പിച്ച് ഉപരിതലത്തിലെത്തിച്ച് നിക്ഷേപണവിധേയമാക്കുന്ന പ്രക്രിയ സാധാരണമാണ് (ഉദാ. യെല്ലോസ്റ്റോൺ പാർക്കിലെ ഓപൽ, ട്രാവെട്രിൻ നിക്ഷേപങ്ങൾ). കാർബൺ ഡൈഓക്സൈഡിന്റെ ശോഷണം മൂലം രൂപംകൊള്ളുന്ന ഏക ധാതുവാണ് കാൽസ്യം കാർബണേറ്റ്. പൂരിത കാർബൺ ഡൈഓക്സൈഡിന്റെ സാന്നിധ്യത്തിൽ മാത്രമേ കാൽസ്യം കാർബണേറ്റ് ജലത്തിൽ ലയിക്കുകയുള്ളൂ. ജലത്തിൽ ലയിച്ചുചേർന്നിരിക്കുന്ന കാൽസ്യം കാർബണേറ്റ് CO2-ന്റെ ശോഷണംമൂലം പുനഃക്രിസ്റ്റലീകരിക്കപ്പെടുന്നതിന്റെ ഫലമാണ് ലോകത്തിലുടനീളം കാണപ്പെടുന്ന ചുണ്ണാമ്പുകൽ ഗുഹകൾ. ഈ രാസപ്രവർത്തനം ഉഭയദിശീയമായതിനാൽ CO2-ന്റെ ശോഷണം കാൽസ്യം കാർബണേറ്റിനെ സ്റ്റാലഗ്റ്റൈറ്റ്, സ്റ്റാലഗ്മൈറ്റ് എന്നിവയുടെ രൂപത്തിൽ പുനർനിക്ഷേപിക്കപ്പെടുന്നു. അരുവികളുടെയും പുഴകളുടെയും തീരങ്ങളിൽ കാണപ്പെടുന്ന കാൽസിയമയ ടുഫയും (Calcareous tufa) സമാന പ്രക്രിയയുടെ ഫലമായാണ് രൂപംകൊള്ളുന്നത്.

സമുദ്രജലത്തിൽ ലയിച്ചുചേർന്നിരിക്കുന്ന CaCO3, SiO2 എന്നിവ സമുദ്രത്തിലെ ചില സൂക്ഷ്മജീവികൾ വലിച്ചെടുത്ത് അവയുടെ പുറന്തോടുകളായി രൂപാന്തരപ്പെടുന്നത് സാധാരണമാണ്. പവിഴപ്പുറ്റുകൾ, ക്രിനോയ്ഡുകൾ, മൊളസ്ക്കുകൾ, ഫൊറാമിനിഫെറകൾ എന്നീ ജീവികൾ സമുദ്രജലത്തിൽനിന്ന് CaCO3 സ്രവിപ്പിക്കുമ്പോൾ ഡയാറ്റം, സ്പോഞ്ച്, റേഡിയോലാരിയൻസ് എന്നിവ SiO2 ആണ് സ്രവിപ്പിക്കുന്നത്. തത്ഫലമായി സമുദ്രാടിത്തട്ടിൽ ചുണ്ണാമ്പുകല്ല്, ചാൽക്ക്, ഡയാറ്റമേഷ്യസ് എർത്ത് എന്നീ ധാതു നിക്ഷേപങ്ങൾ രൂപംകൊള്ളുന്നു.

മാഗ്മയിൽ നിന്ന് നേരിട്ട്

ഭൂവല്കപാളികൾക്കിടയിലേക്കു തള്ളിക്കയറുന്ന മാഗ്മ തണുത്തുറയുന്നതിന്റെ ഫലമായാണ് ഭൂരിഭാഗം ധാതുക്കളും രൂപംകൊള്ളുന്നത്. ഭൂപാളികൾക്കിടയിലേക്കു തള്ളിക്കയറുന്ന മാഗ്മ ഭൂവല്കത്തിൽ എത്തി വളരെപ്പെട്ടെന്ന് തണുത്തുറയുമ്പോൾ സ്ഫടികസമാനമോ ധാതുക്കളുടെ സൂക്ഷ്മതരികളടങ്ങിയതോ ആയ ശിലകൾ രൂപംകൊള്ളുന്നു. എന്നാൽ ഭൗമോപരിതലത്തിലെത്തുന്നതിനു മുമ്പുതന്നെ മാഗ്മയുടെ തണുത്തുറയൽ സംഭവിക്കുകയാണെങ്കിൽ അതിസങ്കീർണമായ ധാതു സംയോഗത്തോടുകൂടിയ ശിലകളായിരിക്കും രൂപംകൊള്ളുക.

സിലിക്കൺ, അലൂമിനിയം, ഇരുമ്പ്, കാൽസ്യം, മഗ്നീഷ്യം, സോഡിയം, പൊട്ടാഷ്യം എന്നിവയാണ് മാഗ്മയിലെ പ്രധാന മൂലക ഘടകങ്ങൾ. ഇതിൽ SiO2 അഥവാ സിലിക്കൺ ആയിരിക്കും കൂടുതൽ. ഇവയ്ക്കു പുറമേ വാതകങ്ങൾ, ജലം, ക്ലോറിൻ, ഫ്ലൂറിൻ, കാർബൺ ഡൈഓക്സൈഡ്, ബോറോൺ, സൾഫർ സംയുക്തങ്ങൾ എന്നിവയും ഉൾപ്പെട്ടിരിക്കും. മാഗ്മയിൽനിന്നു നേരിട്ട് ക്രിസ്റ്റലീകരിക്കപ്പെടുന്ന ധാതുക്കളുടെ പൊതുക്രമം ഇപ്രകാരമാണ്: 1. സിലിക്കാംശം വളരെ കുറഞ്ഞ അൽപസിലിക ധാതുക്കൾ (Basic minerals) -ഇരുമ്പ്, ചെമ്പ്, നിക്കൽ, ക്രോമിയം, പ്ലാറ്റിനം, ടൈറ്റാനിയം, കാർബൺ എന്നിവയുടെ ഓക്സൈഡുകളും സൾഫൈഡുകളും 2. മധ്യവർത്തി ധാതുക്കൾ (പകുതിയിലുള്ളത്ര സിലിക്കാംശം അടങ്ങിയവ) 3. അധിസിലിക ധാതുക്കൾ (Acid minerals സിലിക്കാംശം വളരെ കൂടിയവ). മാഗ്മയിൽനിന്ന് നേരിട്ടുള്ള ധാതുക്കളുടെ ക്രമബദ്ധമായ ഈ ക്രിസ്റ്റലീകരണ പ്രക്രിയയെ മാഗ്മാറ്റിക് വേർതിരിയൽ എന്നു വിളിക്കുന്നു.

കായാന്തരീകരണം മുഖേന

ഉന്നത ഊഷ്മാവും മർദവുമുള്ള മാഗ്മയുടെ സാന്നിധ്യത്തിൽ മാതൃശിലാ ധാതുക്കൾ പരിവർത്തനവിധേയമായി പുതിയ ധാതുക്കളും ശിലകളും രൂപംകൊള്ളുന്ന പ്രക്രിയയാണ് കായാന്തരീകരണം. കായാന്തരീകരണം സംസർഗിതമോ (contact metamorphism) പ്രാദേശികമോ (regional) ഗതികമോ (dynamic) ആകാം. പർവതന പ്രക്രിയയുടെ ഫലമായി അനുഭവപ്പെടുന്ന ഉയർന്ന ചൂടും മർദവും ശിലകളിലെ ജലാംശവും സംയുക്തമായി പ്രവർത്തിക്കുമ്പോൾ നിരവധി ധാതുക്കൾ പുനഃക്രിസ്റ്റലീകരണത്തിനു വിധേയമാകുന്നു. ചുണ്ണാമ്പുകല്ല് മാർബിളും മണൽക്കല്ല് ക്വാർട്ട്സെറ്റുമായി പരിവർത്തനപ്പെടുന്നത് ഗതിക കായാന്തരീകരണത്തിന് ഉത്തമോദാഹരണമാണ്. സ്ഫടിക സ്വാഭാവത്തോടുകൂടിയ അഭ്രം, ടാൽക്ക്, ക്ലോറൈറ്റ്, ഹോൺബ്ളൻഡ് എന്നീ ധാതുക്കൾ അടങ്ങിയ ഷിസ്റ്റും ചിലപ്പോൾ ഈ പ്രക്രിയയുടെ ഫലമായി രൂപംകൊള്ളാം. അപക്ഷയം, പ്രതിസ്ഥാപനം തുടങ്ങിയ പ്രക്രിയകൾ മൂലവും ചിലപ്പോൾ ധാതുക്കൾ രൂപംകൊള്ളാറുണ്ട്.

ഭൗതിക ഗുണങ്ങളും അഭിജ്ഞാനവും

ധാതുക്കളുടെ ഭൗതിക ഗുണങ്ങളാണ് അവയെ തിരിച്ചറിയാൻ സഹായിക്കുന്ന പ്രധാന ഘടകം. പരിശീലനം സിദ്ധിച്ച ഒരു ധാതുവിജ്ഞാനിക്ക് ധാതുക്കളെ അവയുടെ ഭൗതിക ഗുണങ്ങളിൽനിന്നുതന്നെ പെട്ടെന്ന് തിരിച്ചറിയാൻ കഴിയും. നിറം, ദ്യുതി (lusture), ചൂർണാഭ (streak), കാഠിന്യം (hardness), വിഭംഗം (fracture), വിദളനം (cleavage), ആപേഷിക ഘനത്വം (specific gravity) എന്നിവയാണ് ധാതുക്കളുടെ പ്രധാന ഭൌതിക ഗുണങ്ങൾ. ക്രിസ്റ്റൽരൂപം, സംദീപ്തി, അപവർത്തനാങ്കം എന്നിവയ്ക്കു പുറമേ രാസപരീക്ഷണങ്ങളും ധാതുക്കളുടെ അഭിജ്ഞാനത്തിന് വ്യാപകമായി ഉപയോഗിക്കാറുണ്ട്.

നിറം

ധാതുക്കളെ തിരിച്ചറിയാൻ സഹായിക്കുന്ന പ്രധാന ഭൗതിക ഗുണമാണ് അവയുടെ നിറം. മിക്കപ്പോഴും ധാതുവിന്റെ രാസസംഘടനത്തിന്റെ പ്രതിഫലനമായിരിക്കും അതിന്റെ നിറം. ഉദാ. ചെമ്പയിരിന്റെ നിറം മിക്കപ്പോഴും അതിലെ കോപ്പർ കാർബണേറ്റുകളുടെ സംയോജനാനുപാതത്തിന് അനുസൃതമായി പച്ചയോ നീലയോ ആയിരിക്കും. യുറേനിയം ധാതുക്കളിൽ ഭൂരിഭാഗത്തിനും മഞ്ഞനിറമായിരിക്കുമ്പോൾ മാംഗനീസ് സിലിക്കേറ്റുകൾക്കും കാർബണേറ്റുകൾക്കും പാടലവർണവും ഇരുമ്പടങ്ങിയ സിലിക്കേറ്റുകൾക്ക് പൊതുവേ ഇരുണ്ട പച്ചയോ കറുപ്പോ നിറവുമായിരിക്കും. എന്നാൽ ചിലപ്പോൾ ഒരു ധാതുതന്നെ പല നിറങ്ങളിൽ പ്രകൃതിയിൽ കണ്ടെന്നുവരാം (ഉദാ. ക്വാർട്ട്സ്). ഇത്തരം ധാതുക്കളെ തിരിച്ചറിയാൻ അവയുടെ നിറത്തെക്കാൾ ചൂർണാഭ(പൊടിയുടെ നിറം)യാണ് കൂടുതൽ സഹായിക്കുന്നത്. ധാതുവിന്റെ നിറവ്യത്യാസങ്ങൾക്കനുസൃതമായി അതിന്റെ ചൂർണാഭയിൽ മാറ്റം ഉണ്ടാകുന്നില്ല എന്നതാണ് ഇതിനു കാരണം. ഉദാ. ക്വാർട്ട്സിന്റെ ചൂർണാഭ എല്ലായ്പ്പോഴും വെള്ളയായിരിക്കും.

ദ്യുതി

ധാതുക്കളുടെ അഭിജ്ഞാനത്തെ സഹായിക്കുന്ന സവിശേഷമായ മറ്റൊരു ഭൌതിക ഗുണമാണ് ദ്യുതി. ധാതുപ്രതലത്തിന്റെ പ്രകാശ പ്രതിഫലന സ്വഭാവമാണ് അതിന്റെ ദ്യുതി. ദ്യുതിയെ പ്രധാനമായും ലോഹദ്യുതിയെന്നും അലോഹദ്യുതിയെന്നും രണ്ടായി വിഭജിച്ചിരിക്കുന്നു. അലോഹദ്യുതി വിവിധ വർണങ്ങളിൽ ദൃശ്യമാണെങ്കിലും സ്ഫടികദ്യുതിയാണ് (പൊട്ടിയ സ്ഫടികത്തിന്റെ ശോഭ) സർവസാധാരണം. റെസിനസ് ദ്യുതി (മരക്കറയുടെ ശോഭ-ഉദാ. സ്ഫാലറൈറ്റ്, സൾഫർ), പവിഴ ദ്യുതി (ഉദാ. അപ്പോഫിലൈറ്റ്, ടാൽക്), വജ്രദ്യുതി (ഉദാ. വജ്രം) തുടങ്ങിയവയും സാധാരണംതന്നെ. എന്നാൽ ശോഭയില്ലാത്ത ധാതുക്കളും പ്രകൃതിയിൽ കാണപ്പെടുന്നുണ്ട്.

ചൂർണാഭ

ധാതുപൊടിയുടെ നിറമാണ് ചൂർണാഭ. പരുപരുത്ത പോർസെലിൻ പ്ലേറ്റിൽ (സ്ട്രീക്ക് പ്ലേറ്റ്) ചൂർണാഭ നിർണയിക്കേണ്ട ധാതു അമർത്തി ഉരസിയാണ് അതിന്റെ പൊടിയുടെ നിറം പരിശോധിക്കുന്നത്. സ്ട്രീക്ക് പ്ലേറ്റിന്റെ കാഠിന്യം ഏഴ് ആയതിനാൽ മോവിന്റെ കാഠിന്യ മാപക പ്രകാരം ഏഴിനു താഴെ കാഠിന്യമുള്ള ധാതുക്കളുടെ ചൂർണാഭ മാത്രമേ സ്ട്രീക്ക് പ്ളേറ്റ് ഉപയോഗിച്ച് നിർണയിക്കാൻ കഴിയൂ.

കാഠിന്യം

ധാതുക്കളുടെ പ്രധാന ഭൗതിക ഗുണങ്ങളിൽ ഒന്നാണ് അവയുടെ കാഠിന്യം. മോവിന്റെ കാഠിന്യ മാപകത്തിലെ ധാതുക്കളുമായി കാഠിന്യം നിർണയിക്കേണ്ട ധാതുവിനെ അമർത്തി ഉരസി താരതമ്യം ചെയ്താണ് പൊതുവേ ധാതുക്കളുടെ കാഠിന്യം നിർണയിക്കുന്നത്. മോവിന്റെ കാഠിന്യ മാപകം ഇപ്രകാരമാണ്; ടാൽക്ക്-1, ജിപ്സം-2, കാൽസൈറ്റ്-3, ഫ്ലൂറൈറ്റ്-4, അപ്പറൈറ്റ്-5, ഒർതോക്ലേസ്-6, ക്വാർട്ട്സ്-7, ടോപാസ്-8, കൊറണ്ടം-9, ഡയമണ്ട്-10. ഉപസ്ഥിത മേഖലകളിൽനിന്ന് ധാതുക്കളെ ശേഖരിക്കുന്നവർ നഖം, (കാഠിന്യം-2.5), കത്തി (കാഠിന്യം 5.5) എന്നിവ ഉപയോഗിച്ച് ധാതുപ്രതലങ്ങളിൽ പോറൽ ഏല്പിച്ചും അവയുടെ കാഠിന്യം നിർണയിക്കാറുണ്ട്. കാഠിന്യം വളരെ കുറഞ്ഞ ധാതുക്കൾ പൊതുവേ വഴുവഴുപ്പ് പ്രദർശിപ്പിക്കുമ്പോൾ 2-ൽ കൂടുതൽ കാഠിന്യമുള്ള ധാതുക്കളെ നഖംകൊണ്ട് പോറൽ ഏല്പിക്കാൻ കഴിയുന്നു.

വിഭംഗം

വിദളനദിശ (Cleavage direction) വേറിട്ട് പൊട്ടാനുള്ള ധാതുവിന്റെ സ്വഭാവമാണ് വിഭംഗം. വിഭംഗ പ്രതല സ്വഭാവത്തെ അടിസ്ഥാനമാക്കി വിഭംഗത്തെ ശംഖാഭം (ഉദാ. സ്ഫടികം, ക്വാർട്ട്സ്) തന്തുമയം (fibrous), ശകലീഭവം (splintery), ക്രമരഹിതം എന്നിങ്ങനെ വിഭജിക്കുന്നു.

വിദളനം

ധാതുക്കളെ തിരിച്ചറിയാൻ സഹായിക്കുന്ന മറ്റൊരു പ്രധാന ഭൗതിക ഗുണമാണ് അതിന്റെ വിദളനം. അറ്റോമിക പ്രതലത്തിന് (atomic planes) സമാന്തരമായി പിളരുവാനുള്ള ചില ധാതുക്കളുടെ പ്രവണതയാണിത്. വിദളനം മിക്കപ്പോഴും നിയതമോ സാധ്യമായ ക്രിസ്റ്റൽ മുഖങ്ങൾക്ക് സമാന്തരമോ ആയിരിക്കും. ധാതുക്കളുടെ പിളരാനുള്ള കഴിവും അതിന്റെ ദിശയുമാണ് വിദളനത്തെ നിർവചിക്കുന്ന പ്രധാന ഘടകങ്ങൾ. (ഉദാ. ആധാര വിദളനം-ആധാര പ്രതലത്തിന് സമാന്തരമായ വിഭജനം). ആപേഷിക ഘനത്വം, അപവർത്തനാങ്കം, സംദീപ്തി, ക്രിസ്റ്റൽ രൂപം, രാസസ്വഭാവങ്ങൾ തുടങ്ങിയവയും ധാതുക്കളെ തിരിച്ചറിയാൻ സഹായിക്കുന്നു. ധാതുവിന്റെ രാസസംഘടനവും ക്രിസ്റ്റൽ ഘടനയുമാണ് അതിന്റെ ആപേക്ഷിക ഘനത്വത്തെ നിർണയിക്കുന്ന പ്രധാന ഘടകങ്ങൾ. ധാതുക്കളിൽ അടങ്ങിയിരിക്കുന്ന മൂലകങ്ങളുടെ ഭാരവ്യത്യാസത്തിനനുസൃതമായി അവയുടെ ആപേക്ഷിക ഘനത്വം വ്യത്യാസപ്പെടുന്നു.

"https://ml.wikipedia.org/w/index.php?title=ധാതു&oldid=669961" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്