അവകലനം

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
(Differentiation എന്ന താളിൽ നിന്നും തിരിച്ചുവിട്ടതു പ്രകാരം)
Jump to navigation Jump to search

ഫലനങ്ങൾ(Functions) ഉപയോഗിച്ച് ഒരു അളവിന് മറ്റൊന്നിനെ അപേക്ഷിച്ച് ഉണ്ടാകുന്ന മാറ്റത്തിന്റെ നിരക്ക്(differential) കണ്ടെത്തുന്ന രീതിയാണ്‌ അവകലനം(Differentiation). സമാകലനത്തിന്റെ(integral calculus) നേർ വിപരീത പ്രക്രിയ ആണ് അവകലനം. ഐസക് ന്യൂടൻ, ഗോട്ട്ഫ്രൈഡ് ലെയ്ബ്നിസ് എന്നീ ശാസ്ത്രഞ്ജൻമാരാണ് ഇത് വികസിപ്പിച്ചത്.

പ്രവർത്തനം[തിരുത്തുക]

ഉദാഹരണത്തിന്, ചലിച്ചുകൊണ്ടിരിക്കുന്ന ഒരു വസ്തുവിന്റെ ഒരു പ്രത്യേക സമയത്തെ വേഗം കണക്കാക്കണം എന്ന് കരുതുക. ഒന്നുകിൽ അതിന്റെ ആകെ സഞ്ചരിച്ച ദൂരത്തെ സമയം കൊണ്ട് ഭാഗിച്ച്, ശരാശരി വേഗം കണക്കാക്കാം. അല്ലെങ്കിൽ ആ പ്രത്യേക സമയത്തെ ദൂരവും സമയവും കണക്കാക്കി വേഗം കണ്ടുപിടിക്കാം. ഈ പ്രത്യേക സമയത്തിന്റെ ധൈർഗ്യം ഏറ്റവും കുറയുന്തോറും കണക്കാക്കപ്പെടുന്ന വേഗത്തിന്റെ കൃത്യത വർധിക്കുന്നു. പക്ഷെ ഇത് വളരെ ശ്രമകരമായ ജോലിയാണ്.

ഈ വക്രരേഖയിൽ 2 വ്യത്യസ്ത ബിന്ദുക്കൾക്ക് 2 വ്യത്യസ്ത ചരിവ് ആണ് ഉള്ളത്

അത്പോലെ ഒരു വക്രരേഖയുടെ(curve) ചരിവ്(slope) കാണുമ്പോഴും ഈ പ്രശ്നം ഉണ്ടാവുന്നു. ആണ് ഒരു രേഖയുടെ ചരിവ്. ഇതിൽ x, തിരശ്ചീന രേഖയിലുള്ള(x axis) ദീർഘവും, y, ലംബ രേഖയിലുള്ള(y axis) ദീർഘവും ആണ്. ആരേഖം നേർ രേഖയിൽ അല്ലെങ്കിൽ ചരിവ് കൃത്യമായി കാണാൻ ഓരോ ബിന്ദുവിന്റെയും ചരിവ് കാണേണ്ടി വരും.

നിർദ്ധാരണം[തിരുത്തുക]

ചിത്രം 3 ൽ ഒരു ഫലനം y = f(x) ഉണ്ടെന്നു സങ്കല്പിക്കുക. ഇതിൽ y x ന്റെ function ആണ്. തിരശ്ചീനമായി x നെ അപേക്ഷിച് y എത്ര ഉയരത്തിൽ ആണെന്ന് ഇത് പറയുന്നു.

ചിത്രം 3

വക്രരേഖയിലെ A എന്ന ബിന്ദു സങ്കൽപ്പിക്കുക, x ആണ് അതിന്റെ തിരശ്ചീന അളവ്(x coordinate) y ലംബ അളവും(y coordinate). വക്രരേഖയിലെ B എന്ന ബിന്ദു സങ്കൽപ്പിക്കുക, x+h ആണ് അതിന്റെ തിരശ്ചീന അളവ്. f(x+h) ലംബ അളവും. അപ്പോൾ A യിൽ നിന്ന് B യിലേക്കുള്ള രേഖയുടെ ചരിവ്,

, ആകും.

B യെ A യുടെ അടുത്തേക്ക് കൊണ്ട് വരുമ്പോൾ h, 0 ലേക്ക് നീങ്ങും. അപ്പോൾ ചരിവ്, എന്ന് വരുന്നു.

y = x² ആണെങ്കിൽ,

ബിനോമീൽ തിയറം പ്രയോഗിക്കുക അതായത്,



എന്നാൽ എന്ന അളവിനുണ്ടാകുന്ന മാറ്റത്തേയും എന്നാൽ എന്ന അളവിനുണ്ടാകുന്ന മാറ്റത്തേയും സൂചിപ്പിച്ചാൽ പൂജ്യത്തോട് അടുക്കുന്തോറും എന്ന അളവിനുണ്ടാകുന്ന മാറ്റമാണ് എന്നതുകൊണ്ട് ഉദ്ദേശിയ്ക്കുന്നത്. നെ ആശ്രിതമായുള്ള യുടെ അവകലജം എന്ന് വിളിയ്ക്കുന്നു.

ആരേഖം[തിരുത്തുക]

രേഖീയ ഏകദങ്ങൾ ആയ ഫലനങ്ങൾ ഉപയോഗിച്ച് ആരേഖം തയ്യാറാക്കുമ്പോൾ ആയിരിയ്ക്കും അവകലജം.ഇവിടെ നെ ചരിവ് എന്ന് പറയുന്നു. എന്നത് ഒരു നേർ‌രേഖ സമവാക്യമാണ്.രേഖീയ ഏകദങ്ങൾ അല്ലാത്തവയിൽ അവകലജം കാണുന്നതിനായി ലെബനിസ് ഉപപാദ്യം ആണ് ഉപയോഗിയ്ക്കുന്നത്.ഇതാവട്ടെ,സീമ എന്ന ആശയത്തെ മുൻ‌നിർ‌ത്തിയാണ് നിർ‌വ്വചിയ്ക്കുന്നത്.


അവലംബം[തിരുത്തുക]

  • ഹൈസ്ക്കൂൾ ശാസ്ത്രനിഘണ്ടു,കേരള ശാസ്ത്രസാഹിത്യ പരിഷദ്
"https://ml.wikipedia.org/w/index.php?title=അവകലനം&oldid=3123564" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്