സ്റ്റാൻഡേർഡ് മോഡൽ

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.


Standard model of particle physics
Standard Model

അണുഭൌതികശാസ്ത്രത്തിൽ അറിയപ്പെടുന്ന നാല് അടിസ്ഥാന പ്രവർത്തനങ്ങളിൽ മൂന്നെണ്ണത്തിനേയും അടിസ്ഥാനകണങ്ങളേയും സംബന്ധിക്കുന്ന സിദ്ധാന്തമാണ്‌ സ്റ്റാൻഡേർഡ് മോഡൽ. ഈ കണികകൾ കൊണ്ടാണ്‌ ഈ പ്രപഞ്ചത്തിൽ കാണപ്പെടുന്ന എല്ലാ ദ്രവ്യവും നിർമ്മിക്കപ്പെട്ടിരിക്കുന്നത് എന്നു ശാസ്ത്രം കരുതുന്നു. SU(3) X SU(2) X U(1) എന്ന ഗേജ് ഗ്രൂപ്പ് വൈദ്യുതദുർബ്ബല-പ്രബലപ്രവർത്തനങ്ങളെ സംബന്ധിക്കുന്ന ഒരു ഗേജ് സിദ്ധാന്തം ആണിത്.

ഇരുപതാം നൂറ്റാണ്ടിന്റെ മധ്യത്തിൽ നടത്തിയ എല്ലാ ഉന്നതോർജ്ജ ഭൗതികശാസ്ത്രപരീക്ഷണങ്ങളുടെ ഫലങ്ങളും ഈ സിദ്ധാന്തത്തെ സാധൂകരിക്കുന്നുണ്ട്. പക്ഷേ നിലവിൽ അടിസ്ഥാന പ്രവർത്തനങ്ങളിൽ ഇത് അപൂർണ്ണമാണ്‌, കാരണം ഗുരുത്വാകർഷണം, തമോദ്രവ്യം എന്നിവയെ ഇതു വിശദീകരിക്കുന്നില്ല. കൂടാതെ ലെപ്റ്റോണുകളിലും ഇതിന്റെ വിശദീകരണം പൂർണ്ണമല്ല, ന്യൂട്രിനോകളുടെ പിണ്ഡം പൂജ്യമല്ല എന്നു വ്യക്തമാക്കുന്നെങ്കിലും അതെത്രയാണെന്ന് പറയുന്നില്ല.

അടിസ്ഥാന കണികകളുടെ സ്റ്റൻഡേർഡ് മോഡൽ, ഗ്വേജു ബോസോണുകളെ അവസാന നിരയിൽ കാണിച്ചിരിക്കുന്നു.

ചരിത്ര പശ്ചാത്തലം[തിരുത്തുക]

വൈദ്യുതകാന്തീക ക്ഷീണ പ്രവർത്തനങ്ങളെ സമന്വയിപ്പിച്ചവതരിപ്പിക്കാം എന്ന് 1963 ൽ ഷെൽഡൺ ഗ്ലാഷോ നടത്തിയ പരീക്ഷണത്തിലൂടെ കണ്ടെത്തലാണ്‌ ഈ സിദ്ധാന്തത്തിന്റെ രൂപവത്കരണത്തിന്റെ ആദ്യ പടി. 1967 ൽ സ്റ്റീവൻ വെയ്ൻബെർഗ്, അബ്ദുസലാം എന്നിവർ ഗ്ലാഷോവിന്റെ സിദ്ധാന്തത്തിൽ ഹിഗ്ഗ്സ് മെക്കാനിസം കൂട്ടിച്ചേർത്ത ഇതിനൊരു ആധുനിക മുഖം നൽകി.[1][2] W, Z എന്നീ ബോസോണുകൾ, ഫെമിയോണുകൾ (ഇവയെ ക്വാർക്കുകളെന്നും ലെപ്റ്റോണുകളെന്നും വിഭജിച്ചിരിക്കുന്നു) എന്നിങ്ങനെയുള്ള സ്റ്റാൻഡേർഡ് മോഡലിലെ കണങ്ങൾക്ക് ഹിഗ്ഗ്സ് മെക്കാനിസം വഴിയാണ്‌ നിശ്ചലപിണ്ഡം ലഭിക്കുന്നതെന്നാണ്‌ വിശ്വസിക്കപ്പെടുന്നത്.

കണികകൾ[തിരുത്തുക]

അടിസ്ഥാന കണികകൾ: ഫെർമിയോണുകൾ[തിരുത്തുക]

-1/2 സ്പിൻ മൂല്യമുള്ള കണികളായിട്ടാണ്‌ ഫെർമിയോണുകൾ സ്റ്റാൻഡേർഡ് മോഡലിൽ വിശദീകരിക്കപ്പെട്ടിരിക്കുന്നത്, സ്പിൻ-സ്റ്റാറ്റിസ്റ്റിക്സ് സിദ്ധാന്തം അനുസരിച്ച് ഇത് പോളിയുടെ എക്സ്ക്ലൂഷൻ തത്ത്വത്തെ പിൻതാങ്ങുന്നുമുണ്ട്. അറിയപ്പെടുന്നതായി 12 തരം ഫെർമിയോണുകളാണുള്ളത് അവയിലോരോന്നിനും പ്രതികണവുമുണ്ട്. പ്രകടമാക്കുന്ന പ്രവർത്തനങ്ങളെ അടിസ്ഥാനമാക്കിയാണ്‌ ഇവയെ തരം തിരിച്ചിരിക്കുന്നത് (അല്ലെങ്കിൽ അവ വഹിക്കുന്ന ചാർജ്ജിനെ അടിസ്ഥാനമാക്കി). ആറ് ക്വാർക്കുകളും (അപ്, ഡൗൺ, ചാം, സ്ട്രേഞ്ച്, ടോപ്പ്, ബോട്ടം) ആറ് ലെപ്റ്റോണുകളും ( ഇലക്ട്രോൺ, മ്യുഓൺ, ടൗഓൺ പിന്നെ ഇവയുടെ ന്യൂട്രിനോകളും).

ഒരേ ഭൗതിക സ്വഭാവഗുണം പ്രകടമാക്കുന്ന ക്വാർക്കുകളിലേയും ലെപ്റ്റോണുകളിലേയും കണങ്ങളെ ജോഡികളായി തിരിച്ചിരിക്കുന്നു (വലതുവശത്തെ പട്ടിക കാണുക‌).

Organization of Fermions
  ചാർജ്ജ് ആദ്യതലമുറ രണ്ടാം തലമുറ മൂന്നാം തലമുറ
ക്വാർക്കുകൾ +23 Up
Error no symbol defined Charm
Error no symbol defined Top
Error no symbol defined
13 Down
Error no symbol defined Strange
Error no symbol defined Bottom
Error no symbol defined
ലെപ്റ്റോണുകൾ −1 ഇലക്ട്രോൺ Error no symbol defined മ്യൂഓൺ Error no symbol defined ടൗഓൺ Error no symbol defined
0 ഇലക്ട്രോൺ ന്യൂട്രിനോ Error no symbol defined മ്യൂഓൺ ന്യൂട്രിനോ Error no symbol defined ടൗഓൺ ന്യൂട്രിനോ Error no symbol defined

ക്വാർക്കുകളെ വിശദീകരിക്കുന്നതിനനുസരിച്ച് അവയുട ഒരു ഭൗതികഗുണം അവ കളർ ചാർജ് (ഇവിടെയുള്ള കളർ എന്നത് നിത്യജീവിതത്തിലെ കളറല്ല) വഹിക്കുന്നു എന്നാണ്‌ അതുവഴി അവ അധിബലത്തിന് വിധേയമാകുന്നു. അധിബലത്തിനു വിധേയമായി ഇൻഫ്രാറെഡ് കൊൺഫൈനിങ്ങ് എന്ന പ്രതിഭാസം വഴി ക്വാർക്കുകൾ പരസ്പരം ബന്ധിക്കപ്പെട്ട നിലയിലാണ്‌ കാണപ്പെടുക, ഇങ്ങനെ കളർ രഹിത കണികൾ (ഹാഡ്രോണുകൾ), ഒരു ക്വാർക്കും അതിന്റെ പ്രതിക്വാർക്കും അടങ്ങുന്ന കണികൾ (മീസോണുകൾ), മൂന്ന് ക്വാർക്കുകൾ അടങ്ങിയ കണികകൾ (ബാരിയോണുകൾ) എന്നിവ രൂപപ്പെടുന്നു. സുപരിചിതങ്ങളായ പ്രോട്ടോണും ന്യൂട്രോണുകൾ എന്നിവയാണ്‌ ഏറ്റവും പിണ്ഡം കുറഞ്ഞ ബാരിയോണുകൾ. ക്വാർക്കുകൾക്ക് വൈദ്യുതചാർജ്ജ്, വീക്ക് ഐസോസ്പിൻ എന്നിവ വഹിക്കുന്നു. അതുവഴി അവ മറ്റ് ഫെർമിയോണുകളുമായി വൈദ്യുതകാന്തീകപരമായും ക്ഷീണ ന്യൂക്ലിയർ ബലങ്ങൾ വഴിയും പ്രവർത്തനങ്ങളിലേർപ്പെടുന്നു.

ശേഷിക്കുന്ന ആറ് ഫെർമിയോണുകൾ കളർ ചാർജ് വഹിക്കുന്നില്ല, അവയെ ലെപ്റ്റോണുകൾ എന്ന് വിളിക്കുന്നു. ഇവയിൽപ്പെട്ട മൂന്ന് ന്യൂടിനോകളും വൈദ്യുത ചാർജും വഹിക്കുന്നില്ല, അതിനാൽ തന്നെ അവയുടെ സഞ്ചാരത്തെ ക്ഷീണ ന്യൂക്ലിയർ ബലം മാത്രമേ സ്വാധീനിക്കുകയുള്ളൂ, ഈ കാരണങ്ങൾ കൊണ്ടുതന്നെ അവയെ കണ്ടെത്തുന്നത് വളരെയധികം ദുഷ്ക്കരവുമാണ്‌. അതേസമയം ഇലക്ട്രോൺ, മ്യുഓൺ, ടൗഓൺ എന്നിവ വൈദ്യുത ചാർജ്ജ് വഹിക്കുന്നതിനാൽ അവ വൈദ്യുതകാന്തീകപരമായി പ്രവർത്തനങ്ങളിലേർപ്പെടുന്നു.

ഒരോ തലമുറയിൽപ്പെട്ട കണികകൾക്കും അതേ തലത്തിലുള്ള താഴ്ന്ന തലമുറയിൽപ്പെട്ട കണികളേക്കാൾ പിണ്ഡം കൂടുതലാണ്‌. ആദ്യ തലമുറയിൽപ്പെട്ട ചാർജ്ജ് വാഹികളായ കണികൾ ക്ഷയിക്കുന്നില്ല; അതിനാൽ തന്നെ സാധാരണ (ബാരിയോണുകളാലുള്ള) ദ്രവ്യം അവയെകൊണ്ട് നിർമ്മിക്കപ്പെട്ടിരിക്കുന്നു. ഇതനുസരിച്ച് ഒരു ആറ്റത്തിലുള്ള ഇലക്ട്രോണുകൾ അപ്പ്, ഡൗൺ ക്വാർക്കുകളാൽ നിർമ്മിതമായ അണുകേന്ദ്രത്തെയാണ്‌ വലം വയ്ക്കുന്നത്. രണ്ടും മൂന്നും തലമുറയിൽപ്പെട്ട ചർജ്ജ് വാഹികളായ കണികൾ വളരെ കുറഞ്ഞ അർദ്ധായുസോടെ ക്ഷയിക്കുന്നു, അതിനാൽ ഉന്നതോർജ്ജ സാഹചര്യങ്ങളിൽ മാത്രമേ ഇവയുടെ സാന്നിധ്യം കാണപ്പെടുകയുള്ളൂ. എല്ലാം തലമുറയിൽപ്പെട്ട ന്യൂട്രിനോകൾകളും ക്ഷയിക്കുന്നില്ല അവ പ്രവൻ‍ഞ്ചം മുഴുവനും വ്യാപിച്ചു കിടക്കുന്നുണ്ട്, പക്ഷേ വളരെ അപൂർവ്വമായേ ബാരിയോണുകൾകോണ്ട് നിർമ്മിതമായ ദ്രവ്യവുമായി പ്രവർത്തനങ്ങളിൽ ഏർപ്പെടുന്നുള്ളൂ.

ബലവാഹിനികളായ കണികകൾ : ബോസോണുകൾ[തിരുത്തുക]

സ്റ്റാൻഡേർഡ് മോഡലനുസരിച്ച് കണികളുടെ പരസ്പരം പ്രവർത്തനങ്ങൾ വിശദീകരിച്ചിരിക്കുന്നു.

കണികൾ തമ്മിൽ പ്രവർത്തനങ്ങളിൽ ഏർപ്പെകയും മറ്റുള്ളവയെ സ്വാധീനിക്കുകയും ചെയ്യുന്ന രീതികളെയാണ്‌ ഭൗതികശാസ്ത്രത്തിൽ ബലങ്ങൾ എന്നതുകൊണ്ടുദ്ദേശിക്കുന്നത്. ബഹുതലവീക്ഷണത്തിൽ വൈദ്യുതകാന്തീകബലം കണികകളെ വൈദ്യുത കാന്തീക സരണികളിൽ പ്രവർത്തനങ്ങളിലേർപ്പെടുവാൻ സഹായിക്കുന്നു, ഗുരുത്വബലം കണികളെ പരസ്പരം ആകർഷിക്കുവാൻ സഹായിക്കുന്നു, ഇത് ന്യൂട്ടന്റെ ഗുരുത്വാകർഷണ നിയമം വഴി വിശദീകരിക്കപ്പെട്ടിരിക്കുന്നു. സ്റ്റാൻഡേർഡ് മോഡലിൽ ഇത്തരം ബലങ്ങൾ നിർവ്വചിക്കപ്പെട്ടിരിക്കുന്നത് ദ്രവ്യ കണികൾ കൈമാറ്റം ചെയ്യുന്ന ബലവാഹിനികളായ കണികളെന്ന നിലയിലാണ്‌. ഒരു ബലവാഹിയായ കണിക കൈമറ്റം ചെയ്യപ്പെടുമ്പോൾ ബഹുതലവീക്ഷണത്തിൽ അത് കൈമാറ്റം ചെയ്യുന്ന രണ്ട് കണങ്ങളേയും ഒരേ തരത്തിൽ സ്വാധീനിക്കുകയാണ്‌ ചെയ്യുക, അതുകൊണ്ടുതന്നെ ഇത്തരം കണികളെ ആ ബലത്തിന്റെ വാഹകരായി വിളിക്കപ്പെടുന്നു. പരീക്ഷണശാലകളിലും പ്രപഞ്ചത്തിലും പ്രവർത്തിക്കുന്ന ബലങ്ങളുടെ പിന്നിൽ ഇത്തരം കണങ്ങളാണെന്ന് അനുമാനിക്കുന്നു.

സ്റ്റാൻഡേർഡ് മോഡൽ വിശദീകരിക്കുന്ന അറിയപ്പെടുന്ന ബലവാഹിനികളായ കണികൾക്കെല്ലം തന്നെ ദ്രവ്യകണികൾക്കുള്ളതുപോലെ സ്പിൻ ഉണ്ട്, പക്ഷേ ഇവയുടെ സ്പിൻ മൂല്യം 1 ആണ്, അതായ എല്ലാ ബലവാഹിനികളായ കണികകളും ബോസോണുകളാണ്‌. ഇതുകാരണം ഇവ പോളിയുടെ എക്സ്ക്ലൂഷൻ തത്ത്വം പാലിക്കുന്നില്ല. വ്യത്യസ്ത തരത്തിലുള്ള ബലവാഹിനികളായ കണികകളെ താഴെ വിവരിച്ചിരിക്കുന്നു.

  • ഫോട്ടോണുകൾ: വൈദ്യുത ചാർജ്ജ് വഹിക്കുന്ന കണികൾക്കിടയിൽ വൈദ്യുതകാന്തീക ബലവാഹിനിയായി വർത്തിക്കുന്ന കണം. പിണ്ഡരഹിത കണമാണ്‌ ഫോട്ടോൺ, ക്വാണ്ടം വൈദ്യുതഗതിക സിദ്ധാന്തമനുസരിച്ച് വിശദീകരിക്കപ്പെട്ടതാണ്‌ ഇവ.
  • W+, W-, Z വെക്ടർ ബോസോണുകൾ: വ്യത്യസ്ത തരത്തിലുള്ള കണികൾക്കിടയിൽ (ക്വാർക്കുകളും ലെപ്റ്റോണുകളും) ക്ഷീണബലവാഹിനിയായി പ്രവർത്തിക്കുന്നു. വളരെയധികം പിണ്ഡമുള്ളവയാണ്‌ ഇവ Z ബോസോണിനാണ്‌ W± നേക്കാൾ കൂടുതൽ പിണ്ഡമുള്ളത്. W± ഉൾപ്പെടുന്ന പ്രവർത്തനങ്ങൾ കാണപ്പെടുന്നത് ഇടതുദിശ കണികളിലും വലതുദിശ പ്രതികണികകളിലും മാത്രമായാണ്‌, കൂടാതെ W± ‌എന്നിവ +1, -1 എന്നീ വൈദ്യുത ചാർജുകൾ വഹിക്കുന്നുണ്ട് അതുവഴി അവ വൈദ്യുതകാന്തീക പ്രവർത്തനങ്ങളിൽ സ്വാധീനം ചെലുത്തുന്നു. വൈദ്യുതചാർജ് രഹിത കണികയായ Z ബോസോൺ ഇടതുദിശ, വലതുദിശ കണികള ഉ മായും പ്രവർത്തിക്കുന്നു. ഈ മൂന്നു തരത്തിലുള്ള കണികൾ വൈദ്യുതക്ഷീണ പ്രവർത്തനങ്ങളിൽ ഏർപ്പെടുന്നു.
  • ഗ്ലൂഓൺ: കളർ ചാർജ്ജുള്ള ക്വാർക്കുകൾക്കിടയിൽ ശക്തബലവാഹിനികളായി പ്രവർത്തിക്കുന്ന കണികകളാണ്‌ ഗ്ലുഓണുകൾ. പിണ്ഡരഹിതമാണ്‌ ഗ്ലൂഓണുകൾ. ഏട്ട് തരത്തിൽ ഗ്ലുഓണുകൾ കാണപ്പെടുന്നുണ്ട്, ഒരോ ഗ്ലൂഓണിനും ഒരു കളർ ചാർജ്ജും ഒരു പ്രതികളർ ചാർജ്ജും ഉണ്ട്. ഗ്ലുഓണുകൾ കളർ ചാർജ്ജ് വഹിക്കുന്നതിനാൽ അവയ്ക്ക് പരസ്പരം പ്രവർത്തനത്തിലേർപ്പെടാൻ കഴിയും. ഗ്ലൂഓണുകളെയും അവയുടെ പ്രവർത്തനങ്ങളെയും ക്വാണ്ടം ക്രോമോഡൈനാമിക്സ് സിദ്ധാന്തം വഴി വിശദീകരിക്കപ്പെട്ടിരിക്കുന്നു.

സ്റ്റാൻഡേർഡ് മോഡലിലെ കണികകൾ തമ്മിലുള്ള പ്രവർത്തനങ്ങൾ താഴെ കാണിച്ചിരിക്കുന്നു.

ബലവാഹകകണങ്ങൾ
വൈദ്യുതകാന്തീകബലം ന്യൂക്ലിയർ ക്ഷീണബലം ന്യൂക്ലിയർ ശക്തബലം
ഫോട്ടോൺ Error no link defined Error no symbol defined, Error no symbol defined, and Error no symbol defined<br\> ഗേജ് ബോസോണുകൾ Error no link defined, Error no link defined, Error no link defined 8 ഗ്ലൂഓണുകൾ Error no link defined

ഹിഗ്ഗ്സ് ബോസോൺ[തിരുത്തുക]

പ്രധാന ലേഖനം: ഹിഗ്സ് ബോസോൺ

സ്റ്റാൻഡേർഡ് മോഡൽ ഉണ്ടെന്ന് വിശ്വസിക്കുന്ന ഒരു പിണ്ഡമുള്ള ഒരു കണികയാണ്‌ ഹിഗ്ഗ്സ് കണിക. ഇതിനു സ്വന്തമായ സ്പിൻ ഇല്ല അതിനാൽ തന്നെ ഇതിനെ ബോസോണുകളുടെ കൂട്ടത്തിൽ ചേർത്തിരിക്കുന്നു (ബലവാഹിനികളായ കണികകളോടൊപ്പം). ഉയർന്ന അളവിലുള്ള നേർധാരാ ഊർജ്ജപ്രവഹത്തിലൂടെ ഉന്നതോർജ്ജ കൊളൈഡറുകളിൽ മാത്രമേ ഇതിനെ വേർതിരിക്കാനുവുകയുള്ളൂ എന്നതിനാൽ ഇതുമാത്രമാണ്‌ സ്റ്റാൻഡേർഡ് മോഡലിൽ കണ്ടെത്തപ്പെടാത്ത കണം.

ഫോട്ടോണും ഗ്ലുഓണും ഒഴികെയുള്ള സ്റ്റാൻഡേർഡ് മോഡലിലെ മറ്റ് കണങ്ങൾക്ക് എങ്ങനെ പിണ്ഡം ലഭിക്കുന്നു എന്നതിന്റെ പിറകിലെ കാര്യം ഹിഗ്ഗ്സ് ബോസോണിന്റെ വിശദീകരണത്തിലൂടെയായതിനാൽ, ഈ കണിക സ്റ്റാൻഡേർഡ് മോഡലിൽ പ്രത്യേക സ്ഥാനമർഹിക്കുന്നു. കൂടാതെ W, Z ബോസോണുകൾക്ക് കൂടിയ പിണ്ഡമുള്ളതായതോടൊപ്പം ഫോട്ടോണിന് എന്തുകൊണ്ട് പിണ്ഡമില്ലെന്നുമുള്ള ചോദ്യത്തിനും ഹിഗ്ഗ്സ് ബോസോണിന്റെ വിശദീകരണത്തിലൂടെ ഉത്തരം ലഭിക്കുമെന്നു കരുതുന്നു. അടിസ്ഥാന കണികകളുടെ പിണ്ഡം, ഫോട്ടോൺ വഹിക്കുന്ന വൈദ്യുതകാന്തീകതയും W, Z ബോസോണുകൾ വഹിക്കുന്ന ക്ഷീണബലവും തമ്മിലുള്ള വ്യത്യാസം തുടങ്ങിയവയൊക്കെ ദ്രവ്യങ്ങളുടെ സൂക്ഷ്മതലത്തിലേയും അതിനാൽതന്നെ ഉന്നതതലത്തിലേയും ഘടനകളെപ്പറ്റി അറിയുന്നതിനു അത്യന്താപേക്ഷികമാണ്‌. വൈദ്യുതക്ഷീണ സിദ്ധാന്തമനുസരിച്ച് ഹിഗ്ഗ്സ് ബോസോണുകളാണ്‌ ലെപ്റ്റോണുകൾക്കും ക്വാർക്കുകൾക്കും പിണ്ഡം പ്രദാനം ചെയ്യുന്നത്.

ഇതുവരെ നടത്തിയ പരീക്ഷണളിലൊന്നും തന്നെ ഈ കണം സാന്നിധ്യം തെളിയിക്കപ്പെട്ടിട്ടില്ല, പക്ഷേ പരോക്ഷമായ പല തെളിവുകളും ഇതിലേക്ക് വിരൽ ചൂണ്ടുന്നു. സി.ഇ.ആർ.എനിൽ നടത്തുന്ന ലാർജ് ഹാഡ്രോൺ കൊളൈഡർ വഴി ഈ കണികയുടെ നിലനിൽക്കുന്നുണ്ടോ എന്ന സമസ്യയ്ക്ക് ഉത്തരം ലഭിക്കുമെന്ന് പ്രതീക്ഷിക്കുന്നു.


എന്തുകൊണ്ട് പാർട്ടിക്കിളുകൾക്ക് മാസ് കിട്ടുന്നു എന്നതിന്റെ ഉത്തരമായാണു ഹിഗ്ഗ്സ് ബോസോണിനെ പ്രപോസ് ചെയ്യപ്പെട്ടത്. ക്വാണ്ടം മെക്കാനിക്സിൽ, എല്ലാത്തരം ബലങ്ങളേയും പാർട്ടിക്കിളുകളുടെ കൈമാറ്റത്തിലൂടെ വിശദീകരിക്കാം. ഇവ, ലോക്കൽ ഇന്ററാക്ഷനുകളാണു.

ഉദാഹരണത്തിനു, വീക്ക് ന്യൂക്ലിയർ ഡീകേയിൽ ഉള്ള വീക്ക് ഫോഴ്സിനെ, ഒരു ഗണിത സ്ഫിയറിൽ ഉള്ള പാർട്ടിക്കിളുകളുടെ ട്രാൻസിഷനായാണു വിശദീകരിക്കുന്നത്. ന്യൂട്രിനോ എമിഷനിൽ, ന്യൂട്രോൺ, പ്രോട്ടോണായിമാറുന്നു. ഇവിടെ എക്സ്‌ചേഞ്ച് ചെയ്യപ്പെടുന്നത്, W ബോസോണുകളാണു. തിയറി അനുസരിച്ച് പ്രോട്ടോണും, ന്യൂട്രോണും വ്യത്യസ്ത സ്ഥലത്ത് പോളുകളുള്ള (poles) ഒരേതരം വസ്തുക്കളാ. അതുപോലെയാണു ഇലക്രോണും ന്യൂട്രിനോയും. അതുകൊണ്ട്, ഇവ തമ്മിലുള്ള മാറ്റം, സിമട്രി ട്രാൻസ്ഫർമേഷനുകളാണു. ഇത്തരം മാറ്റങ്ങൾക്ക് എനർജി ത്രെഷോൾഡ് ഇല്ല.

ഈ പ്രിൻസിപ്പിൾ വർക്കു ചെയ്യണമെങ്കിൽ, ഗേജ് ബോസോണുകൾക്ക് മാസ്സ് ഉണ്ടാവാൻ പറ്റില്ല. പക്ഷേ, യഥാർത്ഥത്തിൽ, W ബോസോണുകൾക്ക് വളരെയധികം മാസ് ഉണ്ട്. തിയറി അങ്ങനെതന്നെ നിലനിർത്താൻ‌ വേണ്ടി പ്രപോസ് ചെയ്യപ്പെട്ടവയാണു ഹിഗ് ബോസോണുകൾ. അതനുസരിച്ച്, സ്പേസുമുഴുവനും ഹിഗ്ഗ് ഫീൽഡുണ്ട്. എപ്‌റ്റി സ്പേസിൽക്കൂടി പ്രൊപ്പഗേറ്റു ചെയ്യുന്ന W ബോസോൺ, ഹിഗ്സ് ഫീൽഡിൽക്കൂടിയാണു സഞ്ചരിക്കുന്നത് എന്നു അനുമാനിക്കുന്നു. W ബോസോണും, ഹിഗ്സ് ഫീൾഡും തമ്മിലുള്ള ഇന്ററാക്ഷനിൽ, ഡബ്ലിയു ബോസോണുകളുടെ വേഗം കുറയുന്നു - ഇത്, അവയ്ക്കു മാസ് കിട്ടുന്നതിനു ഇക്വലന്റ് ആണു. ഇത്തരം sticky Higgs field ന്റെ ഇപ്ലിക്കേഷനുകൾ ഇവയാണു. 1. എംപ്റ്റി സ്പേസ് യഥാർത്ഥത്തിൽ എംപ്റ്റി അല്ല. 2 മാസില്ലാത്ത പാർട്ടിക്കിളുകൾ ഹിഗ്സ് ഫീൽഡുമായി ഇന്ററാക്റ്റ് ചെയ്യുന്നില്ല 3. ഹിഗ്സ് ഫീൽഡുമായി ഇന്ററാക്റ്റു ചെയ്യപ്പെടുന്നതിലൂടെയാണു, ചില കണങ്ങൾക്ക് മാസ് കിട്ടുന്നത്.

ഹിഗ്ഗ്സ് ഫീൽഡ്, ഇലക്റ്റ്രീക്കലി ന്യൂട്രൽ ആയതിനാൽ, അവയ്ക്ക് ഇലക്ട്രോ മാഗ്നറ്റിക് ഇന്ററാക്ഷനുകൾ ഉണ്ടാവില്ല - ഹിഗ്സ് ഫീൽഡിനെ കാണാൻ പറ്റില്ല. അവയുടെ എക്സിസ്റ്റൻസ് ഉറപ്പാക്കാൻ, ഹിഗ്സ് ഫീൽഡിൽ റിപ്പിൾസ് ഉണ്ടാക്കുകയാണു ചെയ്യുന്നത്. ഇത്തരം റിപ്പിൾസിനെയാണു ഹിഗ്സ് ബോസോൺ എന്നു വിളിക്കുന്നത്. അവയെ W ബോസോണുകളുമായി ഇന്ററാക്റ്റ് ചെയ്യിച്ചാണു കണ്ടുപിടിക്കേണ്ടത്. LHC യിൽ അതാണു ശ്രമിക്കുന്നത്.

അവലംബം[തിരുത്തുക]

  1. S. Weinberg Phys. Rev.Lett. 19 1264–1266 (1967).
  2. "Broken Symmetries and the Masses of Gauge Bosons".
"https://ml.wikipedia.org/w/index.php?title=സ്റ്റാൻഡേർഡ്_മോഡൽ&oldid=2286661" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്