രേഖീയസഞ്ചയം
ഒരു ഗണത്തിലെ അംഗങ്ങളെ ഓരോ സ്ഥിരാങ്കങ്ങളെക്കൊണ്ട് ഗുണിച്ച് അവയുടെ തുക കാണുമ്പോൾ ലഭിക്കുന്ന വ്യഞ്ജകത്തെ ഗണിതത്തിൽ അവയുടെ രേഖീയസഞ്ചയം (linear combination) എന്ന് വിളിക്കുന്നു. ഉദാഹരണമായി, x, y എന്നിവയുടെ രേഖീയസഞ്ചയത്തിന്റെ സാമാന്യരൂപം ax + by ആണ് (ഇവിടെ a, b എന്നിവ സ്ഥിരാങ്കങ്ങളാണ്).[1][2][3] രേഖീയ ബീജഗണിതത്തിലും ബന്ധപ്പെട്ട ഗണിതശാഖകളിലും ഈ സംക്രിയ പ്രധാന പങ്കു വഹിക്കുന്നു.
നിർവചനം
[തിരുത്തുക]ഒരു ക്ഷേത്രത്തിനു മേലുള്ള സദിശസമഷ്ടിയിലെ രേഖീയസഞ്ചയത്തിന്റെ നിർവചനം നോക്കാം. K ഒരു ക്ഷേത്രവും (ഉദാ: വാസ്തവികസംഖ്യകൾ) V അതിനുമേലുള്ള ഒരു സദിശസമഷ്ടിയും ആണെന്ന് കരുതുക. V യിലെ അംഗങ്ങളെ സദിശങ്ങൾ എന്നും K യിലെ അംഗങ്ങളെ അദിശങ്ങൾ എന്നും വിളിക്കുന്നു. v1,...,vn എന്നിവ സദിശങ്ങളും a1,...,an എന്നിവ അദിശങ്ങളുമാണെങ്കിൽ ഈ അദിശങ്ങൾ ഗുണോത്തരങ്ങളായുള്ള സദിശങ്ങളുടെ രേഖീയസഞ്ചയം
ആണ്. ഈ വ്യഞ്ജകത്തെത്തന്നെയോ അതിന്റെ വിലയെയോ രേഖീയസഞ്ചയം എന്ന വാക്കുകൊണ്ട് അർത്ഥമാക്കാം.
ഉദാഹരണങ്ങൾ
[തിരുത്തുക]യൂക്ലിഡിയൻ സദിശങ്ങൾ
[തിരുത്തുക]K എന്ന ക്ഷേത്രം വാസ്തവികസംഖ്യകളുടെ ഗണമായ R ആണെന്നും V എന്ന സദിശസമഷ്ടി R3 എന്ന ത്രിമാന യൂക്ലിഡിയൻ സമഷ്ടി ആണെന്നുമിരിക്കട്ടെ. e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1) എന്ന മൂന്ന് സദിശങ്ങളെടുക്കുക. R3 യിലെ ഏത് സദിശത്തെയും e1, e2, e3 എന്നിവയുടെ രേഖീയസഞ്ചയമായി എഴുതാൻ സാധിക്കും. (a1,a2,a3) എന്ന സദിശത്തെ എഴുതുന്നതെങ്ങനെയെന്ന് നോക്കാം:
ഫലനങ്ങൾ
[തിരുത്തുക]K മിശ്രസംഖ്യകളുടെ ഗണമായ C യും V വാസ്തവികസംഖ്യകളിൽ നിന്ന് മിശ്രസംഖ്യകളിലേക്കുള്ള continuous ഫലനങ്ങളുടെ ഗണമായ CC(R) ഉമാണെന്നിരിക്കട്ടെ. f(t) := eit, g(t) := e−it എന്ന സദിശങ്ങളെടുക്കുക. (ഇവിടെ e സ്വാഭാവിക ലോഗരിതത്തിന്റെ ആധാരവും i എന്നത് -1 ന്റെ വർഗ്ഗമൂലമായ സാങ്കല്പിക ഏകകവുമാണ്.) താഴെ കൊടുത്തിരിക്കുന്ന രണ്ട് ഫലനങ്ങൾ f, g എന്നിവയുടെ രേഖീയസഞ്ചയങ്ങളാണ്:
എന്നാൽ സ്ഥിരാങ്കഫലനമായ 3 ഈ വിധത്തിൽ രേഖീയസഞ്ചയമായി എഴുതാനാവില്ല.
അവലംബം
[തിരുത്തുക]- ↑ Lay, David C. (2006). Linear Algebra and Its Applications (3rd ed.). Addison–Wesley. ISBN 0-321-28713-4.
- ↑ Strang, Gilbert (2006). Linear Algebra and Its Applications (4th ed.). Brooks Cole. ISBN 0-03-010567-6.
- ↑ Axler, Sheldon (2002). Linear Algebra Done Right (2nd ed.). Springer. ISBN 0-387-98258-2.