"വ്യാസം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Jump to navigation Jump to search
513 ബൈറ്റുകൾ കൂട്ടിച്ചേർത്തിരിക്കുന്നു ,  8 വർഷം മുമ്പ്
== സാമാന്യവത്കരണം ==
 
മേൽപറഞ്ഞ നിർവചനങ്ങൾ വൃത്തം, ഗോളം, [[ഉത്തലം]](convex) ആയ [[ദ്വിമാനം|ദ്വിമാന]]രൂപങ്ങൾ എന്നിവക്കു മാത്രം ബാധകമായതാണ്. എന്നാൽ, [[ഹൈപ്പർ ക്യൂബ്]] പോലുള്ള, ഉത്തലമോ അപതലമോ ആയ, N-മാനങ്ങളുള്ള ജ്യാമിതീയ രൂപങ്ങൾക്കും,
’ഒരുകൂട്ടം ചിതറിക്കിടക്കുന്ന ബിന്ദുക്കൾക്കും’ ബാധകമായ പൊതുവായ സാമാന്യവത്കൃത നിർവചനവും ഉണ്ട്
The definitions given above are only valid for circles, spheres and convex shapes. However, they are special cases of a more general definition which is valid for any kind of ''n''-dimensional convex or non-convex object, such as a [[hypercube]] or a set of scattered points. The '''diameter''' of a [[subset]] of a [[metric space]] is the [[supremum|least upper bound]] of the distances between pairs of points in the subset. So, if ''A'' is the subset, the diameter is
 
ഒരു [[മെട്രിക് സ്പെയ്സിലെ]] [[ഉപഗണം||ഉപഗണത്തിന്റെ]] '''വ്യാസം''', ഉപഗണത്തിലെ ബിന്ദു-ജോടികൾ തമ്മിലുള്ള ദൂരത്തിന്റെ [[ലീസ്റ്റ് അപ്പർ ബൗണ്ട്]] ആയിരിക്കും. അതായത് ''ആ'' ഒരു [[ഉപഗണം]] ആണെങ്കിൽ വ്യാസം
:[[supremum|sup]] { d(''x'', ''y'') | ''x'', ''y'' ∈ ''A'' } .
 
If the [[distance function]] d is viewed here as having [[codomain]] '''R''' (the set of all [[real number]]s), this implies that the diameter of the [[empty set]] (the case {{nowrap|1=''A'' = ∅}}) equals −∞ ([[negative infinity]]). Some authors prefer to treat the empty set as a special case, assigning it a diameter equal to 0,<ref>[http://at.yorku.ca/cgi-bin/bbqa?forum=ask_a_topologist_2004;task=show_msg;msg=0860.0002 Re: diameter of an empty set]</ref> which corresponds to taking the codomain of d to be the set of nonnegative reals.
 
180

തിരുത്തലുകൾ

"https://ml.wikipedia.org/wiki/പ്രത്യേകം:മൊബൈൽവ്യത്യാസം/1747121" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്

ഗമന വഴികാട്ടി