സംഗമഗ്രാമമാധവൻ

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
സംഗമഗ്രാമ മാധവൻ
ജനനം c.1340
മരണം c.1425
ഭവനം Sangamagrama (Irinjalakuda (?) in Kerala)
ദേശീയത ഇന്ത്യൻ
വംശം നമ്പൂതിരി
തൊഴിൽ Astronomer-mathematician
പ്രശസ്തി Discovery of power series
expansions of trigonometric
sine, cosine and arctangent functions
ശ്രദ്ധേയ കൃതി(കൾ) /പ്രവർത്തന(ങ്ങൾ) Golavada,
Madhyamanayanaprakara, Venvaroha
പദവി Golavid
മതം ഹിന്ദു

കേരളത്തിലെ ഇരിങ്ങാലക്കുടയിൽ ജീവിച്ചിരുന്ന ഒരു ഗണിത- ജ്യോതിശാസ്ത്രജ്ഞനാണ്‌ സംഗമഗ്രാമ മാധവൻ[1]. യഥാർത്ഥ പേര്‌ ഇരിഞ്ഞാറ്റപ്പിള്ളി മാധവൻ നമ്പൂതിരി എന്നായിരുന്നു. അനന്തശ്രേണി ഉപയോഗിച്ചുള്ള ഗണിതമാർഗ്ഗങ്ങൾ പാശ്ചാത്യപണ്ഡിതർ ആവിഷ്‌ക്കരിക്കുന്നതിന്‌ നൂറ്റാണ്ടുകൾക്കു മുമ്പ്‌ അത്‌ കണ്ടെത്തിയത് ഇദ്ദേഹമാണ്‌.[2] . 1340-ൽ ജനിച്ച മാധവൻ, അനന്തശ്രേണി (infinite series) ഉപയോഗിച്ചു വൃത്തത്തിന്റെ പരിധി സൂക്ഷ്‌മതലത്തിൽ നിർണയിക്കാനുള്ള മാർഗ്ഗം ലോകത്താദ്യമായി ആവിഷ്‌ക്കരിച്ചു‌. ജെയിംസ്‌ ഗ്രിഗറി, ലെബനിറ്റ്‌സ്‌, ലാംബെർട്ട്‌ തുടങ്ങിയ പാശ്ചാത്യ പണ്ഡിതർ ഇതേ മാർഗ്ഗത്തിലൂടെ വൃത്തപരിധി നിർണയിക്കാനുള്ള രീതി കണ്ടെത്തിയത്‌ മൂന്നു നൂറ്റാണ്ടിനു ശേഷം മാത്രമായിരുന്നു. എങ്കിലും ഈ കണ്ടുപിടിത്തത്തിന്റെ ഖ്യാതി ഇപ്പോഴും ഗ്രിഗറിക്കും കൂട്ടർക്കുമാണ്‌.

ജീവചരിത്രം[തിരുത്തുക]

  • 1340 ജനനം
  • 1400 'വേൺവാരോഹം' രചിച്ചു
  • ചന്ദ്രന്റെ സ്ഥാനനിർണയനത്തിനുള്ള ഗണിതമാർഗം കണ്ടുപിടിച്ചു
  • പൈയുടെ മൂല്യം 10 ദശാംശം വരെ കൃത്യമായി കണ്ടു
  • അനന്തശ്രേണി വാക്യങ്ങൾ കണ്ടുപിടിച്ചു
  • 1425 മരണം

തൃശൂർ ജില്ലയിലെ ഇരിങ്ങാലക്കുടയിലാണ്‌ മാധവന്റെ ജനനം. സംഗമഗ്രാമക്കാരനായ മാധവൻ എന്നാണ്‌ തന്റെ കൃതികളിൽ അദ്ദേഹം സ്വയം പരിചയപ്പെടുത്തിയിട്ടുള്ളത്‌. സംഗമഗ്രാമം ഇരിങ്ങാലക്കുടയാണ്‌ (സംഗമേശൻ - ഭരതൻ കുടികൊള്ളുന്ന ഗ്രാമം). ബ്രാഹ്മണവിഭാഗത്തിൽ പെട്ട എമ്പ്രാൻ സമുദായത്തിലാണ്‌ മാധവൻ ജനിച്ചത്‌. ഇലിഞ്ഞിപ്പള്ളിയെന്നായിരുന്നു വീട്ടുപേര്‌. ദൃഗ്ഗണിതം എന്ന ഗണിതപദ്ധതി ആവിഷ്‌ക്കരിച്ച വടശ്ശേരി പരമേശ്വരന്റെ ഗുരു മാധവനായിരുന്നു. 1425-ൽ മാധവൻ അന്തരിച്ചു.

സംഭാവനകൾ[തിരുത്തുക]

സംഗമഗ്രാമ മാധവഃപുനരന്യാസന്നാം പരിധിസംഖ്യാമുലവാൻ

വിബുധനേത്രഗജാഹിഹുതാശനത്രിഗുണവേദാഭവാരണബാഹവഃ
നവനിഖർവമിതേവൃതിവിസ്തരേ പരിധിമാനമിദം ജഗദുർബുധഃ

ഭൂതസംഖ്യാ പ്രകാരമുള്ള സംഖ്യകൾ വഴി 9 x 1011 യൂണിറ്റ് വ്യാസമുള്ള വൃത്തത്തിന്റെ പരിധി 2872 433388233 എന്ന് രേഖപ്പെടുത്തിയിരിക്കുന്നു. അപ്പോൾ

പൈയുടെ വില൧.png

(\pi) = പരിധി/ വ്യാസം = 9 x 1011 / 2872 433388233 = 3.1415926535922


    33                       2      8     8

വിബുധ (ദൈവങ്ങൾ) നേത്ര ഗജ അഹി (നാഗം)

     3                      3     3

ഹുതാശന (അഗ്നി) ത്രി ഗുണ

 4      27                      8                          2

വേദാ ഭ (നക്ഷത്രം) വാരണ (ഗജം) ബാഹവൈ (കൈകൾ) പരിധി


നവ നിഖർവ്വം വ്യാസമുള്ള വൃത്തത്തിന്റേതായിരിക്കും.[3]

'പൈ'യുടെ (\pi) വില പത്തു ദശാംശസ്ഥാനം വരെ കണ്ടെത്താൻ മാധവന്‌ സാധിച്ചു[4]. ഈ വില ഒരു ശ്രേണിയുടെ തുകയായി കണക്കാക്കാമെന്ന്‌, വൃത്തത്തിന്റെ ചുറ്റളവു കണ്ടുപിടിക്കുന്നതിനെക്കുറിച്ചുള്ള ശ്ലോകത്തിൽ മാധവൻ സൂചിപ്പിച്ചു. ശ്രേണിയുടെ തുകയായി 'പൈ'യുടെ മൂല്യം നിർണയിക്കാമെന്ന്‌ ലെബനിറ്റ്‌സ്‌ കണ്ടെത്തിയത്‌, മാധവൻ ഇക്കാര്യം പറഞ്ഞ്‌ മൂന്നു നൂറ്റാണ്ടിന്‌ ശേഷമാണ്‌ ( അതായത് 1673-ൽ). പതിനാലാം നൂറ്റാണ്ടിൽ മാധവൻ ആവിഷ്‌ക്കരിച്ച സൂത്രവാക്യം അനുസരിച്ച്‌ 'പൈ'യുടെ ഏകദേശമൂല്യം 3.14159265359 ആണ്‌. ആധുനിക ഗണിതശാസ്‌ത്രം അംഗീകരിച്ചിരിക്കുന്ന ഏകദേശമൂല്യം 3.14159265 ആണ്‌.

ഇതുമാത്രമല്ല, പിൽക്കാല ഭാരതീയ ഗണിതശാസ്‌ത്രത്തിന്‌ മാർഗ്ഗദർശകങ്ങളായ ഒട്ടേറെ സംഭാവനകൾ മാധവൻ നൽകി. ചന്ദ്രന്റെയും നക്ഷത്രങ്ങളുടെയും സ്ഥാനങ്ങൾ ഓരോ കാലത്തും കൃത്യമായി കണക്കാക്കാനുള്ള മാർഗ്ഗം, Sin(A+B) തുടങ്ങിയ ത്രികോണമിതി വാക്യങ്ങളുടെ വികസനം എന്നിങ്ങനെ മാധവന്റെ സംഭാവനകൾ ഒട്ടേറെയാണ്‌. ചന്ദ്രഗണനത്തിന്‌ വേണ്ടിയുള്ള 248 ചന്ദ്രവാക്യങ്ങൾ അദ്ദേഹം രചിച്ചു. ഗോളഗണിതത്തിൽ പ്രാമാണികനായിരുന്നു മാധവൻ.

ബുധൻ, ചൊവ്വ, ശുക്രൻ, വ്യാഴം, ശനി എന്നീ ഗ്രഹങ്ങളുടെ എ.ഡി. 1236, 1276, 1354, 1396, 1398, 1418 എന്നീ വർഷങ്ങളിലെ സ്ഥാനം എന്തായിരുന്നു എന്നും മാധവൻ ഗണിച്ചിട്ടുണ്ട്‌. ആകാശനിരീക്ഷണത്തിനുള്ള സംവിധാനങ്ങളൊന്നും വികസിക്കാത്ത കാലത്തായിരുന്നു മാധവൻ ഈ മുന്നേറ്റം നടത്തിയത്.

കൃതികൾ[തിരുത്തുക]

1400-ൽ താളിയോലയിൽ 74 ശ്ലോകങ്ങളിലായി സംസ്‌കൃതത്തിൽ എഴുത്തപ്പെട്ട വേണ്വാരോഹം ആണ്‌ മാധവന്റെ പ്രമുഖ കൃതി. ജ്യോതിഷികൾക്ക്‌ സഹായകമാം വിധം ചന്ദ്രന്റെ സ്ഥാനം കൃത്യമായി അറിയാനുള്ള നൂതനമാർഗ്ഗങ്ങളാണ്‌ ഈ ഗ്രന്ഥത്തിൽ അവതരിപ്പിക്കുന്നത്‌. ലഗ്നപ്രകരണം, മഹാജ്യാനയാന പ്രകാരം, മധ്യമാനയാനപ്രകാരം, അഗണിതം, അഗണിത പഞ്ചാംഗം, അഗണിത ഗ്രഹാചാരം എന്നിവ മാധവൻ രചിച്ചതായി കരുതുന്ന മറ്റു കൃതികളാണ്‌.

അനുബന്ധം[തിരുത്തുക]

ഭാരതീയ ശാസ്‌ത്രചരിത്രത്തിൽ, വിശേഷിച്ചും ഗണിത-ജ്യോതിഷരംഗത്ത്‌, മൂല്യവത്തായ സംഭാവന നൽകിയ പ്രമുഖരിൽ ഒട്ടേറെ കേരളീയരും ഉൾപ്പെടുന്നു. പല പാശ്ചാത്യ ഗണിതശാസ്‌ത്രജ്ഞരുടെയും പേരിൽ അറിയപ്പെടുന്ന സിദ്ധാന്തങ്ങൾ അവർക്കു മുമ്പേ ആവിഷ്‌ക്കരിച്ച ഗണിതപ്രതിഭകൾ കേരളത്തിൽ ജീവിച്ചിരുന്നു. സംഗമഗ്രാമ മാധവൻ, നീലകണ്ഠ സോമയാജി, പുതുമന ചോമാതിരി, ഹരിദത്തൻ, വടശ്ശേരി പരമേശ്വരൻ എന്നിങ്ങനെ ആ പട്ടിക നീളുന്നു.

പക്ഷേ, സാമാന്യജനങ്ങളിലേക്ക്‌ വിജ്ഞാനം എത്താൻ കഴിയാത്ത തരത്തിലുള്ള സാമൂഹ്യഘടനയും, സാധാരണക്കാർക്ക്‌ അപ്രാപ്യമായ സംസ്‌കൃതത്തിലായിരുന്നു ഇത്തരം വിജ്ഞാനമണ്ഡലം വികസിച്ചത്‌ എന്നതും, നമ്മുടെ പണ്ഡിതൻമാരുടെ സംഭാവനകൾ ചെറിയൊരു വൃത്തത്തിൽ മാത്രം ഒതുങ്ങിപ്പോകാൻ കാരണമായി. ലോകമറിയുന്നവരായി അവർ മാറിയില്ല. ബാഹ്യലോകമറിയുമ്പോഴേക്കും ആ കണ്ടെത്തലുകളുടെ ഖ്യാതി പാശ്ചാത്യപണ്ഡിതൽ സ്വന്തമാക്കി കഴിഞ്ഞിരുന്നു.

കെ.വി. ശർമയെപ്പോലുള്ള ഒട്ടേറെ പണ്ഡിതരുടെ ശ്രമഫലമായാണ്‌ മാധവന്റെ സംഭാവനകൾ കുറെയെങ്കിലും ഇന്നു ലോകമറിയുന്നത്‌. കെ.വി. ശർമയുടെ ആമുഖത്തോടെ 1956-ൽ തൃപ്പൂണിത്തുറ സംസ്‌കൃത കോളേജിൽ നിന്ന്‌ വേണ്വാരോഹം പ്രസിദ്ധീകരിക്കപ്പെട്ടു. തൃക്കണ്ടിയൂർ അച്യുതപ്പിഷാരടിയുടെ മലയാള വ്യാഖ്യാനത്തോടുകൂടിയും അവിടെ നിന്ന്‌ ഈ ഗ്രന്ഥം പുറത്തുവന്നിട്ടുണ്ട്‌. മാധവന്റെ ചന്ദ്രവാക്യങ്ങൾ തിരിച്ചറിഞ്ഞു പ്രസിദ്ധീകരിച്ചതും കെ.വി. ശർമയാണ്‌.

അവലംബം[തിരുത്തുക]

  1. കേരളത്തെ സ്വാധീനിച്ച 100 വ്യക്തികൾ (സമകാലിക മലയാളം വാരിക 17 ജനുവരി 2014)
  2. C T Rajagopal and M S Rangachari (June 1978). "On an untapped source of medieval Keralese mathematics". Archive for History of Exact Sciences. 18 (2): 89–102. 
  3. സംഗമഗ്രാമ മാധവനെ കണ്ടെത്തൽ. ,സ്വദേശി ശാസ്ത്ര പ്രസ്ഥാനം. 2010. p. 6. 
  4. Azhikode, Sukumar (1993). "4-ശാസ്ത്രവും കലയുംlanguage=മലയാളം". ഭാരതീയത. കോട്ടയം, കേരളം, ഇന്ത്യ: ഡി.സി. ബുക്സ്. p. 81. ഐ.എസ്.ബി.എൻ. 81-7130-993-3. 
കേരളീയ ഗണിത-ജ്യോതിശാസ്ത്ര സരണി
ആര്യഭടൻ | വടശ്ശേരി പരമേശ്വരൻ | സംഗമഗ്രാമ മാധവൻ | നീലകണ്ഠ സോമയാജി | ജ്യേഷ്ഠദേവൻ | അച്യുതപ്പിഷാരടി | മേൽപ്പത്തൂർ നാരായണ ഭട്ടതിരി | അച്യുത പണിക്കർ | പുതുമന ചോമാതിരി
"http://ml.wikipedia.org/w/index.php?title=സംഗമഗ്രാമമാധവൻ&oldid=1907960" എന്ന താളിൽനിന്നു ശേഖരിച്ചത്