ഇലക്ട്രോൺ

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
ഇലക്ട്രോൺ
പച്ച നിറത്തിൽ പ്രകാശിക്കുന്ന ഇലക്ട്രോൺ ബീം സ്ഫടികട്യൂബിനുള്ളിൽ
ക്രൂക്സ് ട്യൂബ് ഉപയോഗിച്ചുള്ള പരീക്ഷണങ്ങളാണ്‌ ഇലക്ട്രോണിന്‌ കണികാസ്വഭാവമുണ്ടെന്ന് ആദ്യമായി തെളിയിച്ചത്.[1]
ഘടകങ്ങൾ മൗലികകണം[2]
സ്ഥിതിവിവരം ഫെർമിയോൺ
തലമുറ ആദ്യത്തേത്
പ്രതിപ്രവർത്തനങ്ങൾ ഗുരുത്വാകർഷണം, വിദ്യുത്കാന്തികത, ദുർബലം
പ്രതീകം e
, β
പ്രതികണം പോസിട്രോൺ (ആന്റിഇലക്ട്രോൺ എന്നും അറിയപ്പെടുന്നു)
സാന്നിധ്യം പ്രവചിച്ചത് റിച്ചാർഡ് ലാമിംഗ് (1838–1851),[3]
ജി. ജോൺസ്റ്റോൺ സ്റ്റോണി (1874) എന്നിവരുൾപ്പെടെയുള്ളവർ.[4][5]
കണ്ടെത്തിയത് ജെ.ജെ. തോംസൺ (1897)[6]
പിണ്ഡം

9.10938215(45)×10−31kg[7]
5.4857990943(23)×10−4u[7]
[1822.88850204(77)]−1 u

0.510998910(13)MeV/c2[7]
ഇലക്ട്രിക് ചാർജ് −1 e[൧]
−1.602176487(40)×10−19C[7]
Magnetic moment [7]
സ്പിൻ 12

ഋണചാർജ്ജുള്ള ഒരു ഉപാണവകണമാണ്‌ ഇലക്ട്രോൺ. ആന്തരഘടനയൊന്നുമുള്ളതായി ഇതുവരെ കണ്ടെത്തിയിട്ടില്ലാത്തതിനാൽ ഇതിനെ മൗലികകണങ്ങളിലൊന്നായി കണക്കാക്കുന്നു.[2]. ഇലക്ട്രോണിന്റെ നിശ്ചലപിണ്ഡം പ്രോട്ടോണിന്റേതിന്‌ 1836-ൽ ഒരു ഭാഗം മാത്രമാണ്‌.[8] സ്പിൻവില പ്ലാങ്ക് സ്ഥിരാങ്കത്തിന്റെ (ħ) പകുതിയായതിനാൽ ഇലക്ട്രോൺ ഒരു ഫെർമിയോൺ ആണ്‌. ഇലക്ട്രോണിന്റെ പ്രതികണമായ പോസിട്രോൺ വിപരീത ചാർജ്ജുകളുള്ളതും മറ്റുതരത്തിൽ സമാനമായതുമായ കണമാണ്‌. ഇലക്ട്രോണും പോസിട്രോണും തമ്മിൽ ഘട്ടനം നടക്കുകയാണെങ്കിൽ അവ വിസരിതമാവുകയോ കൂടിച്ചേർന്ന് ഗാമ രശ്മികൾ പുറപ്പെടുവിച്ച് ഇല്ലാതാവുകയോ ചെയ്യാം. ഒന്നാം തലമുറയിലെ ലെപ്റ്റോണുകളായ[9] ഇലക്ട്രോണുകൾ ഗുരുത്വാകർഷണം, വിദ്യുത്കാന്തികബലം, ദുർബല അണുകേന്ദ്രബലം എന്നിവ വഴി പ്രതിപ്രവർത്തിക്കുന്നു.[10] എല്ലാ ദ്രവ്യത്തെയും പോലെ ഇലക്ട്രോണുകളും ക്വാണ്ടം സ്വഭാവമായ കണികാ-തരംഗ ദ്വൈതസ്വഭാവം പ്രകടിപ്പിക്കുന്നു. അതിനാൽ അവയ്ക്ക് മറ്റ് കണങ്ങളുമായി ഘട്ടനം നടത്താനും പ്രകാശത്തെപ്പോലെ വിഭംഗനത്തിന്‌ വിധേയമാകാനും സാധിക്കുന്നു. പിണ്ഡം കുറവായതിനാൽ ഇലക്ട്രോണുകളിൽ ദ്വൈതസ്വഭാവം കൂടുതൽ പ്രകടമാണ്‌. ഇലക്ട്രോണുകൾ ഫെർമിയോണുകളായതിനാൽ പോളി അപവർജ്ജനനിയമമനുസരിച്ച് രണ്ട് ഇലക്ട്രോണുകൾക്ക് ഒരിക്കലും ഒരേ ക്വാണ്ടം അവസ്ഥയിൽ സ്ഥിതിചെയ്യാനാകില്ല.[9]

ആറ്റങ്ങളുടെ രാസസ്വഭാവം വിശദീകരിക്കാനായി അവിഭാജ്യമായ വൈദ്യുതചാർജ്ജ് എന്ന ആശയം ആദ്യമായി മുന്നോട്ട് വച്ചത് 1838-ൽ ബ്രിട്ടീഷുകാരനായ റിച്ചാർഡ് ലാമിംഗ് ആയിരുന്നു.[4] ഈ ചാർജ്ജിന്‌ ഐറിഷ് ഭൗതികശാസ്ത്രജ്ഞനായ ജോർജ് ജോൺസ്റ്റോൺ സ്റ്റോണി 1894-ൽ ഇലക്ട്രോൺ എന്ന പേരും നൽകി. ജെ.ജെ. തോംസന്റെ നേതൃത്വത്തിലുള്ള ബ്രിട്ടീഷ് ഭൗതികശാസ്ത്രജ്ഞന്മാരുടെ സംഘമാണ്‌ 1897-ൽ ഇലക്ട്രോൺ എന്ന കണികയെ ആദ്യമായി പരീക്ഷണശാലയിൽ തിരിച്ചറിഞ്ഞത്.[6][11]

വൈദ്യുതി, കാന്തികത, താപചാലനം മുതലായ ഭൗതികപ്രക്രിയകളിൽ ഇലക്ട്രോൺ പ്രധാന പങ്ക് വഹിക്കുന്നു. ഒരു നിരീക്ഷകന്‌ ആപേക്ഷികമായി ചലിച്ചുകൊണ്ടിരിക്കുന്ന ഇലക്ട്രോൺ അതിനുചുറ്റും ഒരു കാന്തികക്ഷേത്രം സൃഷ്ടിക്കുകയും ബാഹ്യകാന്തികക്ഷേത്രത്തിന്റെ സാന്നിധ്യത്തിൽ വ്യതിചലിക്കുകയും ചെയ്യുന്നു. ത്വരണത്തിന്‌ വിധേയമാകുന്ന ഇലക്ട്രോണുകൾക്ക് ഫോട്ടോണുകളുടെ രൂപത്തിൽ ഊർജ്ജം സ്വായത്തമാക്കുകയോ നഷ്ടപ്പെടുത്തുകയോ ചെയ്യാനാകും. ഇലക്ട്രോണുകളും അണുകേന്ദ്രത്തിനുള്ളിലെ പ്രോട്ടോണുകളും ന്യൂട്രോണുകളും ചേർന്നാണ്‌ ആറ്റങ്ങൾ സൃഷ്ടിക്കുന്നത്. ആറ്റങ്ങളുടെ പിണ്ഡത്തിന്റെ 0.06 ശതമാനത്തിൽ താഴെ മാത്രമേ ഇലക്ട്രോണുകളുടെ സംഭാവനയായി വരുകയുള്ളൂ. ഇലക്ട്രോണും പ്രോട്ടോണും തമ്മിലുള്ള കൂളോം ആകർഷണമാണ്‌ ഇലക്ട്രോണുകളെ ആറ്റങ്ങളിൽ പിടിച്ചുനിർത്തുന്നത്. ഒന്നിലധികം ആറ്റങ്ങൾ തമ്മിൽ ഇലക്ട്രോണുകളെ കൈമാറ്റം ചെയ്യുകയോ പങ്കുവയ്ക്കുകയോ ചെയ്യുമ്പോൾ രാസബന്ധനങ്ങൾ രൂപം കൊള്ളുന്നു..[12]

നിലവിലെ സിദ്ധാന്തമനുസരിച്ച് പ്രപഞ്ചത്തിലുള്ള മിക്ക ഇലക്ട്രോണുകളും മഹാവിസ്ഫോടനത്തിന്റെ ഫലമായി രൂപം കൊണ്ടവയാണ്‌. ബീറ്റക്ഷയം, ഉന്നതോർജ്ജഘട്ടനങ്ങൾ എന്നിവയും ഇലക്ട്രോണുകളുടെ നിർമ്മാണത്തിന്‌ കാരണമാകുന്നു. പോസിട്രോണുകളുമായി ഘട്ടനത്തിലേർപ്പെടുക വഴിയും നക്ഷത്രങ്ങളിലെ ന്യൂക്ലിയോസിന്തെസിസിന്റെ ഫലമായും ഇലക്ട്രോണുകൾ നശിപ്പിക്കപ്പെടാം. ഇലക്ട്രോണുകളെ വേർതിരിച്ച് നിരീക്ഷിക്കാനും ഇലക്ട്രോൺ പ്ലാസ്മയെ നിരീക്ഷിക്കാനും സാധിക്കുന്ന ഉപകരണങ്ങൾ ഇന്നുണ്ട്. ബഹിരാകാശത്തുള്ള് ഇലക്ട്രോൺ പ്ലാസ്മകളെക്കുറിച്ച് പഠിക്കാൻ ദൂരദർശിനികൾക്കും സാധിക്കുന്നു. ഇലക്ട്രോൺ വെൽഡിംഗ്, കാതോഡ് റേ ട്യൂബുകൾ, ഇലക്ട്രോൺ സൂക്ഷ്മദർശിനികൾ, റേഡിയേഷൻ തെറാപ്പി മുതലായ അനേകം രംഗങ്ങളിൽ ഇലക്ട്രോണുകൾക്ക് വ്യാവസായിക ഉപയോഗമുണ്ട്.

ചരിത്രം[തിരുത്തുക]

ആംബർ കമ്പിളിയുമായി ഉരതുകയാണെങ്കിൽ അതിന്‌ ചെറിയ വസ്തുക്കളെ ആകർഷിക്കാനുള്ള കഴിവ് ലഭിക്കുമെന്ന് ഗ്രീക്കുകാർ മനസ്സിലാക്കിയിരുന്നു. ഇടിമിന്നലിനെ ഒഴിച്ചുനിർത്തിയാൽ വൈദ്യുതിയുമായി മനുഷ്യൻ ആദ്യമായി ബന്ധപ്പെടുന്നത് ഇങ്ങനെയായിരുന്നു.[13] ഉരസുന്നതിന്റെ ഫലമായി ചെറിയ വസ്തുക്കളെ ആകർഷിക്കാനുള്ള ഈ കഴിവിനെ 1600-ൽ പുറത്തിറങ്ങിയ ഡി മാഗ്നെറ്റെ എന്ന ഗ്രന്ഥത്തിൽ ഇംഗ്ലീഷ് ഭൗതികശാസ്ത്രജ്ഞനായ വില്യം ഗിൽബർട്ട് ഇലക്ട്രിക്കസ്സ് (electricus) എന്ന് വിളിച്ചു.[14] ഇലക്ട്രിക്, ഇലക്ട്രിസിറ്റി എന്നീ പദങ്ങൾ ലാറ്റിനിലെ ഇലക്ട്രം (ēlectrum) എന്ന പദത്തിൽ നിന്ന് രൂപം കൊണ്ടവയാണ്‌. ആംബറിന്റെ ഗ്രീക്ക് നാമമായ ഇലക്ട്രോൺ (ήλεκτρον) ആണ്‌ ഈ പദത്തിന്റെ മൂലം.

ദ്രവ്യത്തിന്റെ കാമ്പും ഇതിനുചുറ്റും യൂണിറ്റ് വൈദ്യുതചാർജ്ജുള്ള ഉപാണവകണങ്ങളും ചേർന്നുണ്ടാകുന്നതാണ്‌ ആറ്റം എന്ന് റിച്ചാർഡ് ലാമിംഗ് 1838-നും 1851-നും ഇടയിൽ പരികല്പന നടത്തി.[3] ധന, ഋണ ചാർജ്ജുകളുള്ള ദ്രാവകങ്ങളുടെ പ്രവാഹമാണ്‌ വൈദ്യുതി എന്നും അവയുടെ പ്രതിപ്രവർത്തനം ദൂരത്തിന്റെ വർഗ്ഗത്തിന്‌ ആനുപാതികമായി ക്ഷയിക്കുന്നു എന്നും ജർമ്മൻ ഭൗതികശാസ്ത്രജ്ഞനായ വില്യം വെബർ സിദ്ധാന്തിച്ചു. വൈദ്യുതവിശ്ലേഷണത്തെക്കുറിച്ച് പഠിച്ച ജോർജ് ജോൺസ്റ്റോൺ സ്റ്റോണി വാലൻസി 1 ആയുള്ള അയോണുകളുടെ ചാർജ്ജിന്‌ തുല്യമായ ചാർജ്ജാണ്‌ വൈദ്യുതിയുടെ നിശ്ചിതമായ അളവ് എന്ന് അഭിപ്രായപ്പെട്ടു. ഫാരഡേയുടെ വൈദ്യുതവിശ്ലേഷണനിയമങ്ങൾ ഉപയോഗിച്ച് ഈ വില കണ്ടെത്താനും അദ്ദേഹത്തിനായി.[15] എന്നാൽ ഈ ചാർജ്ജുകൾ ആറ്റങ്ങളുമായി പറിച്ചുമാറ്റാനാകാത്തവിധം ബന്ധപ്പെട്ടവയാണെന്നായിരുന്നു അദ്ദേഹം കരുതിയിരുന്നത്. ധനചാർജ്ജുകളും ഋണചാർജ്ജുകളും മൗലികഭാഗങ്ങളാൽ നിർമ്മിതമാണെന്നും ഇവ വൈദ്യുതിയുടെ ആറ്റങ്ങളുടെ സ്വഭാവം കാണിക്കുന്നുവെന്നും ജർമ്മൻ ഭൗതികശാസ്ത്രജ്ഞനായ ഹെർമൻ ഫോൺ ഹെൽമ്‌ഹോൾട്സ് പറഞ്ഞു.[4]

1894-ൽ സ്റ്റോണിയാണ്‌ ഈ മൗലികചാർജ്ജുകൾക്ക് ഇലക്ട്രോൺ എന്ന പേരു നൽകിയത്.[16] ഇംഗ്ലീഷ് പദമായ electron എന്നത് electric എന്ന പദവും -on എന്ന പരപ്രത്യയവും ചേർന്നതാണ്‌. ഈ പരപ്രത്യയം ഇപ്പോൾ എല്ലാ ഉപാണവകണങ്ങൾക്ക് പേരിടുമ്പോഴും ഉപയോഗിക്കുന്നു.[17][18]

കണ്ടുപിടിത്തം[തിരുത്തുക]

A round glass vacuum tube with a glowing circular beam inside
കാന്തികക്ഷേത്രത്തിന്റെ സാന്നിധ്യത്തിൽ വൃത്താകാരപാതയിൽ ചലിക്കുന്ന ഇലക്ട്രോണുകൾ[19]

ജർമ്മൻ ഭൗതികശാസ്ത്രജ്ഞനായ ജൊഹാൻ വിൽഹെൽമ്‌ ഹിറ്റോർഫ് സാന്ദ്രത കുറഞ്ഞ വാതകങ്ങളിലെ വൈദ്യുതചാലകതയെക്കുറിച്ച് പഠിക്കാനിറങ്ങിപ്പുറപ്പെട്ടു. 1869-ൽ കാതോഡിൽ നിന്നും ഒരു തിളക്കം പുറത്തുവരുന്നതായി അദ്ദേഹം കണ്ടെത്തി. വാതകത്തിന്റെ മർദ്ദം കുറച്ചുകൊണ്ടുവരുന്നതോടെ ഇതിന്റെ തീവ്രത വർദ്ധിക്കുന്നതായാണ്‌ അദ്ദേഹത്തിന്‌ കാണാൻ സാധിക്കുന്നത്. ഈ തിളക്കത്തിൽ നിന്ന് പുറത്തുവരുന്ന രശ്മികൾ നിഴലുകളുണ്ടാക്കുന്നതായി ജർമ്മൻകാരൻ തന്നെയായ ഓയ്ഗൻ ഗോൾഡ്സ്റ്റൈൻ 1876-ൽ നിരീക്ഷിച്ചു. ഇവയ്ക്ക് അദ്ദേഹം കാതോഡ് രശ്മികൾ എന്ന പേര്‌ നൽകി.[20] 1870-കളിൽ ഇംഗ്ലീഷ് രസതന്ത്രജ്ഞനും ഭൗതികശാസ്ത്രജ്ഞനുമായ സർ വില്യം ക്രുക്സ് ഉയർന്ന ശൂന്യതയുള്ള ആദ്യത്തെ കാതോഡ് റേ ട്യൂബ് നിർമ്മിച്ചു.[21] ഇതുപയോഗിച്ച്, കാതോഡ് രശ്മികൾ ആനോഡിലേക്ക് സഞ്ചരിക്കുന്നുവെന്നും ഊർജ്ജം കൊണ്ടുപോകുന്നുവെന്നും അദ്ദേഹം കണ്ടെത്തി. കാന്തികക്ഷേത്രത്തിന്റെ സാന്നിദ്ധ്യത്തിൽ രശ്മികൾ വളയുന്നുവെന്നും അതിനാൽ അവ ഋണചാർജ്ജുള്ളവയായിരിക്കണമെന്നും അദ്ദേഹം മനസ്സിലാക്കി.[22][23] റേഡിയന്റ് ദ്രവ്യം എന്ന് പേരിട്ട പ്രതിഭാസമുപയോഗിച്ച് ഈ നീരിക്ഷണങ്ങൾക്കെല്ലാം ഒരു വിശദീകരണം അദ്ദേഹം മുന്നോട്ടുവച്ചു. ഋണചാർജ്ജുള്ളതും കാതോഡിൽ നിന്ന് ഉയർന്ന വേഗത്തിൽ ഉത്സർജ്ജിക്കപ്പെടുന്നതുമായ തന്മാത്രകളടങ്ങിയ ദ്രവ്യത്തിന്റെ നാലാമത്തെ ഒരവസ്ഥയായിരുന്നു റേഡിയന്റ് ദ്രവ്യം.[24]

ജർമ്മനിയിൽ ജനിച്ച ബ്രിട്ടീഷ് ഭൗതികശാസ്ത്രജ്ഞനായ ആർതർ ഷൂസ്റ്റർ ക്രൂക്സ് നടത്തിയ പരീക്ഷണങ്ങളെ മുന്നോട്ടുകൊണ്ടുപോയി. കാതോഡ് രശ്മികൾക്ക് സമാന്തരമായി ലോഹപ്ലേറ്റുകൾ വയ്ക്കുകയും അവയ്ക്കിടയിൽ പൊട്ടൻഷ്യൽ വ്യത്യാസം സൃഷ്ടിച്ച് പരീക്ഷണം നടത്തുകയും ചെയ്തു. വൈദ്യുതക്ഷേത്രം ഇലക്ട്രോണുകളെ ധനചാർജ്ജുള്ള പ്ലേറ്റിലേക്ക് കൊണ്ടുചെന്നു. രശ്മികൾ ഋണചാർജ്ജുള്ളവയാനെന്നതിന്‌ ഇത് കൂടുതൽ തെളിവ് നൽകി. വൈദ്യുതിയും രശ്മികളുടെ വളവും തമ്മിലുള്ള ബന്ധമുപയോഗിച്ച് ഇലക്ട്രോണുകളുടെ വൈദ്യുതചാർജ്ജും പിണ്ഡവും തമ്മിലുള്ള അംശബന്ധവും അദ്ദേഹം കണ്ടെത്തി. എന്നാൽ അന്ന് പ്രതീക്ഷിച്ചിരുന്നതിനെക്കാൽ ആയിരം മടങ്ങ് വലുതായിരുന്നു അദ്ദേഹം കണ്ടെത്തിയ ഈ വില എന്നതിനാൽ ആരും ഈ കണ്ടെത്തലിനെ കാര്യമായെടുത്തില്ല.[22][25]

1896-ൽ ബ്രിട്ടീഷ് ഭൗതികശാസ്ത്രജ്ഞനായ ജെ.ജെ. തോംസണും സഹപ്രവർത്തകരായ ജോൺ ടൗൺസെൻഡ്, ഹാരോൾഡ് വിൽസൺ[6] എന്നിവരും ചേർന്ന് കാതോഡ് രശ്മികൾ മുമ്പ് കരുതിയിരുന്നപോലെ തരംഗങ്ങളോ ആറ്റങ്ങളോ തന്മാത്രകളോ അല്ലെന്നും യഥാർത്ഥത്തിൽ കണികകളാണെന്നും തെളിയിക്കുന്ന പരീക്ഷണങ്ങൾ നടത്തി. കോർപസിലുകൾ എന്ന് അദ്ദേഹം പേരിട്ട ഈ കണികകൾക്ക് ഏറ്റവും ഭാരം കുറഞ്ഞ മൂലകമായ ഹൈഡ്രജന്റെ പിണ്ഡത്തിന്റെ ആയിരത്തിലൊരു ഭാഗമേ ഉണ്ടാകൂ എന്ന് അദ്ദേഹം കണക്കാക്കി. ഇവയുടെ വൈദ്യുതചാർജ്ജിനും നല്ല ഒരു ഏകദേശവില കാണാൻ അദ്ദേഹത്തിനായി.[11] കണങ്ങളുടെ ചാർജ്ജും പിണ്ഡവും തമ്മിലുള്ള അംശബന്ധം കാതോഡിൽ ഏത് വസ്തുവാണ്‌ ഉപയോഗിക്കുന്നത് എന്നതിനെ ആശ്രയിക്കുന്നില്ല എന്ന സുപ്രധാന നിരീക്ഷണം നടത്തിയത് തോംസണാണ്‌. റേഡിയോആക്റ്റീവ് വസ്തുക്കൾ, ചൂടാക്കപ്പെട്ട വസ്തുക്കൾ, പ്രകാശിതമായ വസ്തുക്കൾ എന്നിവ പുറപ്പെടുവിക്കുന്ന ഋണചാർജ്ജുള്ള കണികകൾ ഒന്നുതന്നെയാണെന്നും അദ്ദേഹം സ്ഥാപിച്ചു.[26] ഈ കണികകൾക്ക് ഇലക്ട്രോൺ എന്ന പേരിട്ടത് ഐറിഷ് ഭൗതികശാസ്ത്രജ്ഞനായ ജോർജ് ഫിറ്റ്സ്ജെറാൾഡായിരുന്നു. ഈ പേര്‌ വളരെപ്പെട്ടെന്ന് പ്രചാരം നേടി.[22]

സാധാരണ അവസ്ഥയിൽ ഫ്ലൂറസൻസ് കാണിക്കുന്ന ഖനിജങ്ങളെക്കുറിച്ച് പഠിച്ചുകൊണ്ടിരിക്കുകയായിരുന്ന ഹെൻറി ബെക്വറൽ ബാഹ്യ ഊർജ്ജസ്രോതസ്സുകളൊന്നുമില്ലാതെതന്നെ അവ വികിരണം പുറപ്പെടുവിക്കുന്നുവെന്ന് 1896-ൽ കണ്ടെത്തി. ന്യൂസീലാൻഡുകാരനായ ഏണസ്റ്റ് റൂഥർഫോർഡ് ഉൾപ്പെടെയുള്ള ഭൗതികശാസ്ത്രജ്ഞർ ഇതിനെക്കുറിച്ച് കൂടുതൽ പഠിക്കാനാരംഭിച്ചു. ഇവ കണികകളെ പുറത്തുവിടുന്നുവെന്ന് അദ്ദേഹം കണ്ടെത്തി. ദ്രവ്യത്തിൽ തുളച്ചുകയറാനുള്ള കഴിവനുസരിച്ച് അവയെ ആൽഫ കണം, ബീറ്റ കണം എന്നിങ്ങനെ അദ്ദേഹം തരം തിരിച്ചു.[27] റേഡിയം പുറത്തുവിടുന്ന ബീറ്റ കണങ്ങളെ വളയ്ക്കാൻ വൈദ്യുതക്ഷേത്രത്തിന്‌ സാധിക്കുമെന്നും അവയുടെ ചാർജ്ജ്-പിണ്ഡ അനുപാതം കാതോഡ് രശ്മികളുടേതിന്‌ തുല്യമാണെന്നും 1900-ൽ ബെക്വറൽ കണ്ടെത്തി.[28] ഇലക്ട്രോണുകൾ ആറ്റങ്ങളുടെ ഭാഗമാണെന്ന വിശ്വാസം ഇത് ശക്തമാക്കി.[29][30]

അമേരിക്കൻ ഭൗതികശാസ്ത്രജ്ഞനായ റോബർട്ട് മില്ലിക്കൻ ഓയിൽ ഡ്രോപ് പരീക്ഷണത്തിലൂടെ ഇലക്ട്രോണിന്റെ ചാർജ്ജിന്റെ കൃത്യമായ വില 1909-ൽ കണ്ടെത്തി. പരീക്ഷണഫലങ്ങൾ 1911-ലാണ്‌ അദ്ദേഹം പുറത്തുവിട്ടത്. ചാർജ്ജുള്ള ഒരു തുള്ളി എണ്ണ ഗുരുത്വാകർഷണഫലമായി വീഴുന്നത് വൈദ്യുതക്ഷേത്രമുപയോഗിച്ച് തടഞ്ഞുനിർത്തിയാണ്‌ ഈ പരീക്ഷണം നടത്തിയത്. 1 മുതൽ 150 വരെ അയോണുകളുടെ വൈദ്യുതചാർജ്ജ് 0.3 ശതമാനത്തിൽ താഴെ പിഴവോടെ കണ്ടെത്താൻ അദ്ദേഹത്തിന്റെ പരീക്ഷണത്തിന്‌ സാധിക്കുമായിരുന്നു. 1911-ൽ വെള്ളത്തുള്ളികളുപയോഗിച്ച് പരീക്ഷണം ആവർത്തിച്ച അബ്രാം അയോഫെ മില്ലികന്റേതിന്‌ സമാനമായ വിലകൾ കണ്ടെത്തി. പരീക്ഷണഫലങ്ങൾ അദ്ദേഹം 1913-ലാണ്‌ പുറത്തുവിട്ടത്.[31] എണ്ണയുടെ ബാഷ്പീകരണനിരക്ക് കുറവായതിനാൽ വെള്ളമുപയോഗിച്ച് നടത്തിയ പരീക്ഷണത്തെക്കാൾ കൂടുതൽ എളുപ്പവും കൃത്യവും എണ്ണയുപയോഗിച്ച് നടത്തിയതായിരുന്നു.[32]

അതിവേഗത്തിൽ ചലിക്കുന്ന ചാർജ്ജുകൾ ചില പ്രത്യേക സാഹചര്യങ്ങളിൽ സൂപ്പർസാച്യുറേറ്റഡ് ആയ നീരാവിയെ ദ്രാവകരൂപത്തിലേക്ക് മാറ്റുമെന്ന കണ്ടുപിടിത്തം ഇരുപതാം നൂറ്റാണ്ടിന്റെ ആദ്യത്തിൽ നടന്നു. 1911-ൽ ഈ പ്രതിഭാസം ഉപയോഗപ്പെടുത്തി ചാൾസ് വിൽസൺ ക്ലൗഡ് ചേംബർ നിർമ്മിച്ചു. ഉന്നതവേഗത്തിൽ ചലിക്കുന്ന ഇലക്ട്രോണുകളുൾപ്പെടെയുള്ള ചാർജ്ജുള്ള കണികകളുടെ ചിത്രങ്ങളെടുക്കാൻ ഇതുവഴി സാധിച്ചു.[33]

അറ്റോമിക് സിദ്ധാന്തം[തിരുത്തുക]

Three concentric circles about a nucleus, with an electron moving from the second to the first circle and releasing a photon
ബോർ ആറ്റം മാതൃക. ഇലക്ട്രോണിന്റെ ഊർജ്ജത്തിന്റെ ക്വാണ്ടം അവസ്ഥകൾ n എന്ന സംഖ്യവഴി സൂചിപ്പിക്കുന്നു. താഴ്ന്ന ഊർജ്ജമുള്ള ക്വാണ്ടം അവസ്ഥയിലേക്ക് മാറുന്ന ഇലക്ട്രോൺ ഊർജ്ജനിലകളുടെ വ്യത്യാസത്തിന്‌ തുല്യമായ ഊർജ്ജമുള്ള ഫോട്ടോൺ പുറപ്പെടുവിക്കുന്നു.

സാന്ദ്രമായ അണുകേന്ദ്രവും ഇതിനുചുറ്റും ഭാരം കുറഞ്ഞ ഇലക്ട്രോണുകളും അടങ്ങിയതാണ്‌ ആറ്റം എന്ന് 1914 ആയപ്പോഴേക്കും ഏണസ്റ്റ് റൂതർഫോർഡ്, ഹെൻറി മോസ്‌ലി, ജെയിംസ് ഫ്രാങ്ക്, ഗുസ്താവ് ഹേർട്സ് എന്നിവരുടെ പരീക്ഷണങ്ങളിലൂടെ തെളിഞ്ഞിരുന്നു.[34] ഇലക്ട്രോണുകൾ നിശ്ചിത അളവ് ഊർജ്ജങ്ങളും കോണീയ സംവേഗങ്ങളുമുള്ള (ക്വാണ്ടൈസ്ഡ്) അവസ്ഥകളിലേ കാണപ്പെടൂ എന്ന് 1913-ൽ ഡാനിഷ് ഭൗതികശാസ്ത്രജ്ഞനായ നീൽസ് ബോർ പരികല്പന നടത്തി. ഒരു ഊർജ്ജാവസ്ഥയിൽ നിന്ന് മറ്റൊന്നിലേക്ക് മാറാൻ ഇലക്ട്രോണുകൾക്ക് സാധിക്കും. ഇതോടനുബന്ധിച്ച് ഇലക്ട്രോൺ ഊർജ്ജനിലകളിലെ വ്യത്യാസത്തിന്‌ സമമായ ഊർജ്ജമുള്ള ഫോട്ടോണിനെ വലിച്ചെടുക്കുകയോ പുറത്തുവിടുകയോ ചെയ്യും. ഹൈഡ്രജൻ ആറ്റത്തിന്റെ സ്പെക്ട്രൽ രേഖകളെ ഇതുവഴി കൃത്യമായി വിശദീകരിക്കാൻ ബോറിന്‌ സാധിച്ചു.[35] എങ്കിലും സ്പെക്ട്രൽ രേഖകളുടെ തീക്ഷ്ണതയിലെ വ്യത്യാസം വിശദീകരിക്കാനും കൂടുതൽ സങ്കീർണ്ണമായ ആറ്റങ്ങളുടെ വർണ്ണരാജികൾ വിശദീകരിക്കാനും ബോർ മാതൃകയ്ക്ക് സാധിച്ചില്ല.[34]

1916-ൽ ഗിൽബർട്ട് ന്യൂട്ടൺ ലൂയിസ് രാസബന്ധനങ്ങളെ വിശദീകരിച്ചു. സഹസംയോജകബന്ധനം എന്നത് രണ്ട് ആറ്റങ്ങൾ ഒരു ജോഡി ഇലക്ട്രോണുകളെ പങ്കുവയ്ക്കുമ്പോൾ ഉണ്ടാകുന്നതാണെന്നാണ്‌ അദ്ദേഹം പറഞ്ഞത്.[36] ഇലക്ട്രോൺ ജോഡികളുടെ രൂപവത്കരണവും രാസബന്ധനങ്ങളും ക്വാണ്ടം ബലതന്ത്രത്തിന്റെ ഭാഷയുപയോഗിച്ച് പിന്നീട് 1923-ൽ വാൾട്ടർ ഹൈറ്റ്ലർ, ഫ്രിറ്റ്സ് ലണ്ടൺ എന്നിവർ ചേർന്ന് വിശദീകരിച്ചു.[37] 1919-ൽ അമേരിക്കൻ രസതന്ത്രജ്ഞനായ ഇർവിങ് ലാങ്മ്യൂയിർ ല്യൂവിസ് മാതൃക വികസിപ്പിച്ച് ഇലക്ട്രോണുകൾ ഒരേ കേന്ദ്രമുള്ളതും ഒരേ കട്ടിയുള്ളതുമായ ഗോളാകാരഷെല്ലുകളിലാണ്‌ സ്ഥിതിചെയ്യുന്നത് എന്ന് അഭിപ്രായപ്പെട്ടു.[38] ഷെല്ലുകളെ ഓരോ ജോഡി ഇലക്ട്രോണുകൾ വീതമുള്ള സെല്ലുകളായി അദ്ദേഹം വിഭജിച്ചു. ഈ മാതൃകയുപയോഗിച്ച് ആവർത്തനപ്പട്ടികയിലെ എല്ലാ മൂലകങ്ങളുടെയും രാസഗുണങ്ങളെ qualitative ആയി അദ്ദേഹത്തിന്‌ വിശദീകരിക്കാനായി.[37] ആവർത്തനപ്പട്ടികയിലെ മൂലകങ്ങൾ ആവർത്തനനിയമമനുസരിക്കുന്നുവെന്ന് അറിയപ്പെട്ടിരുന്നു.[39]

1924-ൽ ഓസ്ട്രിയൻ ഭൗതികശാസ്ത്രജ്ഞനായ വുൾഫ്ഗാങ് പൗളി ആറ്റത്തിന്റെ ഷെൽ ഘടന വിശദീകരിക്കുവാൻ സരളമായ ഒരു മാതൃക മുന്നോട്ടുവച്ചു : ഓരോ ക്വാണ്ടം ഊർജ്ജസ്ഥിതിയും നാല് സംഖ്യകളുപയോഗിച്ച് നിർവചിക്കുക. ഒരു ക്വാണ്ടം ഊർജ്ജസ്ഥിതിയിലും ഒന്നിലധികം ഇലക്ട്രോണുകൾ ഉണ്ടാകരുത്. (ഒന്നിലധികം ഇലക്ട്രോണുകൾ ഒരേ ക്വാണ്ടം സ്ഥിതിയിലുണ്ടാകരുത് എന്ന നിയമം പൗളിയുടെ അപവർജ്ജനനിയമം എന്നറിയപ്പെടുന്നു.)[40] നാലാമത്തെ സംഖ്യയുടെ ഭൗതികപ്രാധാന്യം വിശദീകരിച്ചത് ഡച്ച് ഭൗതികശാസ്ത്രജ്ഞരായ അബ്രഹാം ഗൗഡ്സ്മിത്ത്, ജോർജ്ജ് ഊലെൻബെക്ക് എന്നിവരാണ്‌. ഭ്രമണപഥത്തിലെ കോണീയസംവേഗത്തിനുപുറമെ ആന്തരികമായ ഒരു കോണീയസംവേഗം കൂടി ഇലക്ട്രോണുകൾക്കുണ്ടെന്ന് അവർ അഭിപ്രായപ്പെട്ടു.[34][41] ഈ സവിശേഷത സ്പിൻ എന്നറിയപ്പെടാൻ തുടങ്ങി. സ്പെക്ട്രൽ രേഖകളെ സൂക്ഷിച്ചുനോക്കിയാൽ അവ പിളർന്നതായിക്കാണുന്ന പ്രതിഭാസത്തിനും സ്പിൻ വഴി വിശദീകരണമായി. ഇത് ഫൈൻ സ്ട്രക്ചർ സ്പ്ലിറ്റിംഗ് എന്നറിയപ്പെടുന്നു.[42]

ക്വാണ്ടം ബലതന്ത്രം[തിരുത്തുക]

1924-ൽ ഫ്രഞ്ച് ഭൗതികശാസ്ത്രജ്ഞനായ ലൂയി ഡി ബ്രോളി ബിരുദാന്തരബിരുദത്തിനായുള്ള Recherches sur la théorie des quanta (ക്വാണ്ടം സിദ്ധാന്തത്തെക്കുറിച്ചുള്ള ഗവേഷണം) എന്ന തന്റെ തീസിസിൽ എല്ലാ ദ്രവ്യവും പ്രകാശത്തെപ്പോലെ ദ്വൈതസ്വഭാവം കാണിക്കുന്നു എന്ന പരികല്പന നടത്തി.[43] അതായത് ചില സാഹചര്യങ്ങളിൽ ഇലക്ട്രോണുകളും മറ്റ് ദ്രവ്യവും തരംഗസ്വഭാവവും കണികാസ്വഭാവവും കാണിക്കുന്നു. ഒരു നിശ്ചിതസമയത്ത് ഒരു കണം ഒരു നിശ്ചിതസ്ഥലത്താണുള്ളതെങ്കിൽ അത് കണികാസ്വഭാവത്തിന്‌ ഉദാഹരണമാണ്‌.[44] സമാന്തരമായ ദ്വാരങ്ങളിലൂടെ കടന്നുപോകുന്ന പ്രകാശം വ്യതികരണത്തിന്‌ വിധേയമാകുന്നത് തരംഗസ്വഭാവത്തിന്‌ ഉദാഹരണമാണ്‌. 1927-ൽ ഇലക്ട്രോണുകളുടെ ഒരു ബീമിനെ ജി.പി. തോംസൺ കട്ടികുറഞ്ഞ ലോഹപാളിയിലൂടെയും ക്ലിന്റൺ ഡേവിസൺ, ലെസ്റ്റർ ജെർമർ എന്നിവർ നിക്കൽ പരലിലൂടെയും കടത്തിവിട്ടു. ഇലക്ട്രോണുകൾ വ്യതികരണത്തിന്‌ വിധേയമാകുന്നതായി ഇരുകൂട്ടർക്കും കാണാനായി.[45]

A symmetrical blue cloud that decreases in intensity from the center outward
ക്വാണ്ടം ബലതന്ത്രത്തിൽ ഓർബിറ്റലുകൾ ഉപയോഗിച്ച് ആറ്റത്തിനുള്ളിലെ ഇലക്ട്രോണുകളുടെ സ്വഭാവം വിശദീകരിക്കുന്നു. ഓർബിറ്റൽ എന്നാൽ സംഭാവ്യതയുടെ വിതരണമാണ്‌. ചിത്രത്തിൽ ഇരുണ്ട ഭാഗം ഇലക്ട്രോണിനെ കണ്ടെത്താൻ കൂടുതൽ സാധ്യതയുള്ളതാണ്‌.

ഡി ബ്രോളി മാതൃകയുടെ വിജയം 1926-ൽ ഇതിനെ അടിസ്ഥാനമാക്കി ഷ്രോഡിങർ സമവാക്യം പ്രസിദ്ധീകരിക്കാൻ എർവിൻ ഷ്രോഡിങറെ പ്രേരിപ്പിച്ചു. ഇലക്ട്രോൺ തരംഗങ്ങളുടെ പ്രസരണം വിജയകരമായി വിശദീകരിക്കാൻ ഈ സമവാക്യത്തിന്‌ സാധിച്ചു.[46] ഷ്രോഡിങർ സമവാക്യം ഒരു സമയത്ത് ഇലക്ട്രോണിന്റെ സ്ഥാനമല്ല നൽകുന്നത്, മറിച്ച് ഓരോ ഭാഗത്തും ഇലക്ട്രോണിനെ കണ്ടെത്താനുള്ള സംഭാവ്യതയാണ്‌. പിന്നീട് ക്വാണ്ടം ബലതന്ത്രം എന്നറിയപ്പെട്ട ഈ രീതിക്ക് ഹൈഡ്രജൻ ആറ്റത്തിനകത്തെ ഇലക്ട്രോണിന്റെ ഊർജ്ജാവസ്ഥകൾക്ക് നല്ല വിശദീകരണം നൽകാൻ സാധിച്ചു.[47] സ്പിൻ, ഇലക്ട്രോണുകൾ തമ്മിലുള്ള പ്രതിപ്രവർത്തനം എന്നിവ കണക്കിലെടുക്കുകയാണെങ്കിൽ കൂടുതൽ സങ്കീർണ്ണമായ ആറ്റങ്ങളെയും വിശദീകരിക്കാൻ ക്വാണ്ടം ബലതന്ത്രത്തിനായി.[48]

പൗളിയുടെ പഠനങ്ങളെ അടിസ്ഥാനമാക്കി 1928-ൽ പോൾ ഡിറാക് ഇലക്ട്രോണിന്റെ സ്വഭാവം വിശദീകരിക്കുന്ന ഡിറാക് സമവാക്യം കണ്ടെത്തി. വിദ്യുത്കാന്തികക്ഷേത്രത്തിന്റെ ക്വാണ്ടം ബലതന്ത്രത്തിലെ ഹാമിൽട്ടോണിയൻ പുനരാസൂത്രണത്തിൽ ആപേക്ഷികത, സമമിതി എന്നിവ ചേർത്താണ്‌ ഇത് സാധിച്ചത്.[49] തന്റെ ആപേക്ഷികസമവാക്യങ്ങളിലെ ചിലെ പ്രശ്നങ്ങളെ മറികടക്കാനായി ശൂന്യതയെ ഋണ ഊർജ്ജമുള്ള കണങ്ങളുടെ അനന്തസാഗരമായി ഡിറാക് സങ്കല്പിച്ചു. ഈ സങ്കല്പം ഡിറാക് കടൽ എന്നറിയപ്പെടുന്നു. ഇലക്ട്രോണിന്റെ പ്രതികണമായ പോസിട്രോൺ പരികല്പന ചെയ്യുന്നതിലേക്ക് ഇത് അദ്ദേഹത്തെ നയിച്ചു.[50] 1932-ൽ ഈ കണത്തെ കാൾ ആൻഡേഴ്സൺ കണ്ടെത്തി. ഇലക്ട്രോണുകളെ നെഗട്രോണുകൾ എന്നും ഇലക്ട്രോണുകളെയും പോസിട്രോണുകളെയും ചേർത്ത് ഇലക്ട്രോണൂകൾ എന്നും വിളിക്കാനായിരുന്നു അദ്ദേഹം ഇഷ്ടപ്പെട്ടത്. നെഗട്രോൺ എന്ന പദം ഇപ്പോഴും ഉപയോഗത്തിലുണ്ട് - ചുരുക്കി നെഗറ്റോൺ എന്ന രൂപത്തിലും ഇത് ഉപയോഗിക്കുന്നു[51][52]

1947-ൽ വില്ലിസ് ലാംബ് ഗവേഷണവിദ്യാർത്ഥിയായ റോബർട്ട് റെതെർഫോർഡുമൊത്ത് നടത്തിയ പഠനങ്ങളിൽ നിന്ന് ഒരേ ഊർജ്ജമുണ്ടാകേണ്ട ഹൈഡ്രജൻ ആറ്റത്തിലെ ചില ക്വാണ്ടം അവസ്ഥകൾ ഊർജ്ജത്തിൽ നേരിയ വ്യത്യാസം കാണിക്കുന്നു എന്ന് കണ്ടെത്തി. ഈ വ്യത്യാസം ലാംബ് ഷിഫ്റ്റ് എന്നറിയപ്പെടുന്നു. ഏതാണ്ട് ഇതേ കാലം പോളികാർപ് കുഷ്, ഹെൻറി എം. ഫോളി എന്നിവർ ചേർന്ന് ഇലക്ട്രോണിന്റെ കാന്തികമൊമന്റ് ഡിറാക് സിദ്ധാന്തം പ്രവചിച്ചതിലും അല്പം കൂടുതലാണെന്ന് കണ്ടെത്തി. ഈ ചെറിയ വ്യത്യാസങ്ങളെ വിശദീകരിക്കാനായത് പിന്നീട് സിൻ-ഇടിരോ ടോമൊനാഗ, ജൂലിയൻ ഷ്വിങർ, റിച്ചാർഡ് ഫെയ്ൻമാൻ എന്നിവർ ചേർന്ന് 1940-കളിൽ ക്വാണ്ടം വിദ്യുത്ഗതികം എന്ന ഭൗതികശാസ്ത്രശാഖയ്ക്ക് തുടക്കമിട്ടതിന്‌ ശേഷമാണ്‌.[53]

കണികാത്വരണികൾ[തിരുത്തുക]

ഇരുപതാം നൂറ്റാണ്ടിന്റെ ആദ്യപകുതിയിൽ കണികാത്വരണികൾ കണ്ടുപിടിക്കപ്പെട്ടതോടെ ഭൗതികശാസ്ത്രജ്ഞന്മാർ ഉപാണവകണങ്ങളുടെ സവിശേഷതകളെപ്പറ്റി കൂടുതൽ മനസ്സിലാക്കാനുള്ള അന്വേഷണമാരംഭിച്ചു.[54] വൈദ്യുതകാന്തികപ്രേരണമുപയോഗിച്ച് ഇലക്ട്രോണുകളെ ത്വരിതപ്പെടുത്താനുള്ള ശ്രമത്തിൽ ആദ്യമായി വിജയിച്ചത് 1942-ൽ ഡോണാൾഡ് കേഴ്സ്റ്റ് ആയിരുന്നു. അദ്ദേഹത്തിന്റെ ബീറ്റാട്രോൺ 2.3 MeV വരെ ഊർജ്ജം ഇലക്ട്രോണുകൾക്ക് നൽകാൻ പ്രാപ്തമായിരുന്നു. പിന്നീട് 300 MeV വരെ ശേഷിയുള്ള ബീറ്റാട്രോണുകൾ നിർമ്മിക്കപ്പെട്ടു. ജനറൽ ഇലക്ട്രിക്കിലെ 70 MeV ശേഷിയുള്ള സിങ്ക്രോട്രോണിൽ വച്ച് 1947 സിൻക്രോട്രോൺ വികിരണം കണ്ടെത്തി. പ്രകാശവേഗത്തോടടുത്ത വേഗത്തിൽ സഞ്ചരിക്കുന്ന ഇലക്ട്രോണുകൾ കാന്തികക്ഷേത്രമുപയോഗിച്ച് ത്വരിതപ്പെടുത്തുന്നത് വഴിയാണ്‌ ഈ വികിരണം പുറത്തുവന്നത്.[55]

ആദ്യത്തെ ഉന്നതോർജ്ജ കണികാഘട്ടകമായ അഡോൺ 1968-ൽ പ്രവർത്തനമാരംഭിച്ചു. 1.5 GeV ആയിരുന്നു ഇതിന്റെ ശേഷി.[56] ഇലക്ട്രോണുകളെയും പോസിട്രോണുകളെയും വിപരീതദിശകളിൽ നിന്ന് കൊണ്ടുവന്ന് ഘട്ടനം നടത്തുക വഴി അവയുടെ ഘട്ടനോർജ്ജം നിശ്ചലവസ്തുവിൽ ചെന്നിടിക്കുന്ന ഇലക്ട്രോണിന്റെ ഊർജ്ജത്തിന്റെ ഇരട്ടിയാക്കാൻ ഈ കണികാത്വരണിക്ക് സാധിച്ചു.[57] സെർണിലെ ലാർജ് ഇലക്ട്രോൺ-പോസിട്രോൺ കൊളൈഡർ (LEP) 1989-ൽ പ്രവർത്തനമാരംഭിച്ചു. 209 GeV ശേഷിയുണ്ടായിരുന്ന ഈ കണികാത്വരണി അടിസ്ഥാനമാതൃകയുമായി ബന്ധപ്പെട്ട പ്രധാന കണ്ടെത്തലുകൾക്ക് വഴിയൊരുക്കി. 2000 വരെ ഇത് പ്രവർത്തനനിരതമായിരുന്നു.[58][59]

സവിശേഷതകൾ[തിരുത്തുക]

തരംതിരിവ്[തിരുത്തുക]

മൗലികകണങ്ങളുടെ പ്രാമാണിക മാതൃക. താഴെ ഇടതുമൂലയിൽ ഇലക്ട്രോൺ

കണികാഭൗതികത്തിലെ അടിസ്ഥാനമാതൃകയനുസരിച്ച് ലെപ്റ്റോണുകൾ എന്ന വർഗ്ഗത്തിൽ പെടുന്ന ഉപാണവകണങ്ങളാണ്‌ ഇലക്ട്രോണുകൾ. ലെപ്റ്റോണുകൾ അടിസ്ഥാനകണങ്ങൾ (മൗലികകണങ്ങൾ) ആണെന്ന് കരുതപ്പെടുന്നു. ചാർജ്ജുള്ള ലെപ്റ്റോണുകളിൽ പിണ്ഡം ഏറ്റവും കുറഞ്ഞവയാണ്‌ ഇലക്ട്രോണുകൾ. ഇവ അടിസ്ഥാനകണങ്ങളുടെ ഒന്നാം തലമുറയിൽ പെടുന്നു.[60] രണ്ടും മൂന്നും തലമുറകളിൽ മ്യൂഓൺ, ടൗഓൺ എന്നീ കണങ്ങളാണുള്ളത്. ഇവയ്ക്ക് ഇലക്ട്രോണിന്റെ അതേ ചാർജ്ജും സ്പിന്നും അടിസ്ഥാനപ്രവർത്തനങ്ങളുമാണ്‌ ഉള്ളതെങ്കിലും ഇവ ഇലക്ട്രോണിനെക്കാൾ പിണ്ഡം വളരെക്കൂടുതലുള്ളവയാണ്‌. ശക്തപ്രതിപ്രവർത്തനത്തിന്‌ വിധേയരാകുന്നില്ല എന്നതാണ്‌ ലെപ്റ്റോണുകൾക്ക് ദ്രവ്യത്തിന്റെ മറ്റൊരു അടിസ്ഥാനഘടകമായ ക്വാർക്കുകളിൽ നിന്നുള്ള വ്യത്യാസം. ലെപ്റ്റോണുകളുടെ സ്പിൻ സംഖ്യ ഒറ്റസംഖ്യയുടെ പകുതിയായതിനാൽ ഇവയെല്ലാം ഫെർമിയോണുകളാണ്‌. ഇലക്ട്രോണിന്റെ സ്പിൻ വില 12 ആണ്‌.[61]

അടിസ്ഥാന സ്വഭാവങ്ങൾ[തിരുത്തുക]

ഇലക്ട്രോണിന്റെ നിശ്ചലപിണ്ഡം 9.109×10−31 കിലോഗ്രാം അഥവാ 5.489×10−4 amu ആണ്‌.[7] ഐൻസ്റ്റൈന്റെ ദ്രവ്യമാന-ഊർജ സമവാക്യമനുസരിച്ച് ഇത് 0.511 MeV ഊർജ്ജത്തിന്‌ തുല്യമാണ്‌. പ്രോട്ടോണിന്റെ ഭാരം ഇലക്ട്രോണിന്റേതിന്‌ 1836 ഇരട്ടിയാണ്‌.[8][62] പ്രപഞ്ചത്തിന്റെ പ്രായത്തിന്റെ പകുതിക്കാലമെങ്കിലും ഈ വിലയിൽ മാറ്റമൊന്നും വന്നിട്ടില്ലെന്നാണ്‌ ജ്യോതിശാസ്ത്രനിരീക്ഷണങ്ങൾ കാണിക്കുന്നത്. അടിസ്ഥാനമാതൃകയും ഇതാണ്‌ പ്രവചിക്കുന്നത്.[63]

ഇലക്ട്രോണുകൾക്ക് −1.602×10−19 കൂളോം,[7] വൈദ്യുതചാർജ്ജുണ്ട്. ഈ വില ഉപാണവകണങ്ങളുടെ ചാർജ്ജ് സൂചിപ്പിക്കാനുള്ള ഏകകമായി സാധാരണ ഉപയോഗിക്കുന്നു. ഇതുവരെയുള്ള പരീക്ഷണങ്ങളെല്ലാം ഇലക്ട്രോണിനും പ്രോട്ടോണിനും ഒരേ പരിമാണവും എന്നാൽ വിപരീതചിഹ്നവുമുള്ള ചാർജ്ജുകളാണെന്നാണ്‌ കാണിക്കുന്നത്.[64] മൗലികചാർജ്ജിനെ സൂചിപ്പിക്കാൻ e എന്ന ചിഹ്നമുപയോഗിക്കുന്നതിനാൽ ഇലക്ട്രോണിനെ e
ചിഹ്നമുപയോഗിച്ചാണ്‌ സൂചിപ്പിക്കുന്നത്. ഇവിടെ - ചിഹ്നം ഋണചാർജ്ജിനെ സൂചിപ്പിക്കുന്നു. ഇലക്ട്രോണിന്റെ അതേ ഗുണങ്ങളും എന്നാൽ വിപരീതചാർജ്ജുമുള്ള പോസിട്രോണിനെ സൂചിപ്പിക്കുന്നതാകട്ടെ e+
എന്ന ചിഹ്നമുപയോഗിച്ചുമാണ്‌.[7][61]

ഇലക്ട്രോണിന്‌ തനതായ കോണീയ സംവേഗം (സ്പിൻ) 12 ഉണ്ട്.[7] ഇതിനാൽ ഇലക്ട്രോണുകളെ സ്പിൻ-12 കണങ്ങൾ എന്ന് വിളിക്കുന്നു.[61] സ്പിൻ-12 കണങ്ങളുടെ സ്പിനിന്റെ പരിമാണം 32 ħ ആണ്‌.[൨] എന്നാൽ കോണീയസംവേഗത്തിന്‌ ഏത് അക്ഷത്തിൽ പ്രൊജക്ഷൻ എടുത്താലും വില ±ħ2 ആയേ ലഭിക്കുകയുള്ളൂ. സ്പിന്നിന്‌ പുറമെ സ്പിൻ അക്ഷത്തിന്‌ സമാന്തരമായ കാന്തികമൊമന്റും ഇലക്ട്രോണീനുണ്ട്.[7] ഇതിന്റെ വില ഏതാണ്ട് ഒരു ബോർ മാഗ്നെറ്റോൺ ആണ്‌[65][൩] (1 ബോർ മാഗ്നെറ്റോൺ = 9.274 009 15(23) × 10−24 ജൂൾ/ടെസ്ല).[7] ഇലക്ട്രോണിന്റെ സ്പിൻ, സംവേഗം എന്നിവയുടെ ആപേക്ഷികവിന്യാസം മൗലികകണങ്ങളുടെ മറ്റൊരു സവിശേഷതയായ ഹെലിസിറ്റി നിർവചിക്കുന്നു.[66]

ഇതുവരെ മനസ്സിലാക്കിയതനുസരിച്ച് ഇലക്ട്രോണിന്‌ ആന്തരഘടനയില്ല.[2][67] അതിനാൽ ഇലക്ട്രോണിന്റെ പിണ്ഡവും ചാർജ്ജും ഒരു ബിന്ദുവിൽ കേന്ദ്രീകൃതമായി കണക്കാക്കുന്നു.[9] പെന്നിങ് ട്രാപ്പിലെ ഇലക്ട്രോണിന്റെ നിരീക്ഷണം ഇലക്ട്രോണിന്‌ ആരമുണ്ടെങ്കിൽ അത് 10−22 മീറ്ററിൽ താഴെയായിരിക്കുമെന്ന് തെളിയിക്കുന്നു.[68] ഉദാത്ത ഇലക്ട്രോൺ ആരം എന്ന ഒരു ഭൗതികസ്ഥിരാങ്കമുണ്ട്. ഇതിന്റെ വില 2.8179×10−15m ആണ്‌. ക്വാണ്ടം ബലതന്ത്രം കണക്കിലെടുക്കാതെയുള്ള കണക്കുകൂട്ടലുകളാണ്‌ ഇലക്ട്രോണിന്റെ യഥാർത്ഥ ഘടനയുമായി യാതൊരു ബന്ധവുമില്ലാത്ത ഈ സ്ഥിരാങ്കത്തിലേക്ക് നയിക്കുന്നത്.[69][൪]

പിണ്ഡം കുറഞ്ഞ ഒന്നിലേറെ കണങ്ങളായി താനേ വിഘടിക്കുന്ന മൗലികകണങ്ങളുണ്ട്. ഇലക്ട്രോൺ, ന്യൂട്രിനോ, ആന്റിന്യൂട്രിനോ എന്നിങ്ങനെ മൂന്നായി വിഘടിക്കുന്ന മ്യൂഓൺ ഇതിനുദാഹരണമാണ്‌. 2.2×10−6 സെക്കന്റ് മാത്രമാണ്‌ ഇതിന്റെ ആയുസ്സ്. എന്നാൽ സൈദ്ധാന്തികകാരണങ്ങളാൽ ഇലക്ട്രോൺ ഇങ്ങനെ വിഘടിക്കുന്നില്ല എന്നാണ്‌ കരുതുന്നത്. പിണ്ഡം ഏറ്റവും കുറഞ്ഞ ചാർജ്ജുള്ള കണമാണ്‌ ഇലക്ട്രോൺ എന്നതിനാൽ ഇലക്ട്രോൺ വിഘടനം ചാർജ്ജ് സംരക്ഷണനിയമത്തിന്‌ എതിരാകും.[70] ഇലക്ട്രോണിന്റെ ശരാശരി ആയുസ്സ് ചുരുങ്ങിയത് 4.6×1026 വർഷമാണെന്നാണ്‌ പരീക്ഷണങ്ങളിൽ നിന്ന് ലഭിക്കുന്നത്.[71]

ക്വാണ്ടം സ്വഭാവം[തിരുത്തുക]

മറ്റ് കണങ്ങളെപ്പോലെ ഇലക്ട്രോണുകൾക്കും തരംഗസ്വഭാവം കാണിക്കാനാകും. ഈ ദ്വൈതസ്വഭാവം ഡബിൾ സ്ലിറ്റ് പരീക്ഷണത്തിൽ പ്രകടമാകുന്നു. സമാന്തരമായ രണ്ടു സ്ലിറ്റുകളിലൂടെ ഒരേ സമയം കടന്നുപോകാൻ തരംഗസ്വഭാവം മൂലം ഇലക്ട്രോണിന്‌ സാധിക്കുന്നു. ഉദാത്തഭൗതികത്തിലെ കണങ്ങൾക്ക് ഒരു സമയം ഒരു സ്ലിറ്റിലൂടെയേ കടന്നുപോകാൻ സാധിക്കുമായിരുന്നുള്ളൂ. ക്വാണ്ടം ബലതന്ത്രത്തിൽ ഇലക്ട്രോണിന്റെ തരംഗസ്വഭാവം വിശദീകരിക്കുന്നത് മിശ്രസംഖ്യകളുടെ വിലകൾ സ്വീകരിക്കുന്ന വേവ് ഫങ്ഷനുപയോഗിച്ചാണ്‌. ψ എന്ന ചിഹ്നം ഇതിനെ സൂചിപ്പിക്കാനുപയോഗിക്കുന്നു. വേവ് ഫങ്ഷന്റെ മാപാങ്കത്തിന്റെ വർഗ്ഗം ഒരു സ്ഥലത്തിനടുത്ത് ഇലക്ട്രോണിനെ കണ്ടെത്താനുള്ള സംഭാവ്യതാസാന്ദ്രത നൽകുന്നു.[72]

A three dimensional projection of a two dimensional plot. There are symmetric hills along one axis and symmetric valleys along the other, roughly giving a saddle-shape
ദ്വിമാന പെട്ടിയിലെ രണ്ട് ഫെർമിയോണുകളുടെ വേവ് ഫങ്ഷന്റെ ഗ്രാഫ്. വേവ് ഫങ്ഷൻ എതിർസമമിതിയുള്ളതാണ്‌.

ഇലക്ട്രോണുകൾ അഭിന്നകകണങ്ങളാണ്‌ - അതായത്, ആന്തരികമായ സവിശേഷതകളുപയോഗിച്ച് അവയെ വേർതിരിച്ചറിയുക സാധ്യമല്ല. അതിനാൽ രണ്ട് ഇലക്ട്രോണുകളെ പരസ്പരം മാറ്റുകയാണെങ്കിൽ ക്വാണ്ടം വ്യവസ്ഥകളുടെ സ്ഥിതിയിൽ നിരീക്ഷണയോഗ്യമായ വ്യത്യാസങ്ങളുണ്ടാവുക സാധ്യമല്ല. ഇലക്ട്രോണുകളുൾപ്പെടെയുള്ള ഫെർമിയോണുകളുടെ വേവ് ഫങ്ഷൻ എതിർസമമിതിയുള്ളതാണ്‌. രണ്ട് ഇലക്ട്രോണുകളെ പരസ്പരം മാറ്റുമ്പോൾ വേവ് ഫങ്ഷന്റെ ചിഹ്നം മാറുന്നു. ψ(r1, r2) = −ψ(r2, r1). ഇവിടെ r1, r2 എന്നിവ രണ്ട് ഇലക്ട്രോണുകളെ സൂചിപ്പിക്കുന്നു. ചിഹ്നത്തിൽ വരുന്ന മാറ്റം മാപാങ്കത്തെ ബാധിക്കാത്തതിനാൽ നിരീക്ഷണയോഗ്യമായ പരിമാണമായ സംഭാവ്യതയിൽ വ്യത്യാസം വരുന്നില്ല. ഫോട്ടോണുകളുൾപ്പെടെയുള്ള ബോസോണുകളിലാകട്ടെ വേവ് ഫങ്ഷൻ സമമിതിയുള്ളതാണ്‌.[72]

വേവ്ഫങ്ഷനുകൾ എതിർസമമിതിയുള്ളവയായതിനാൽ രണ്ട് ഇലക്ട്രോണുകൾ ഒരേസ്ഥലത്ത് വരുന്ന രീതിയിലുള്ള വേവ് ഫങ്ഷനുകൾക്ക് സംഭാവ്യത പൂജ്യമായിരിക്കും. ഇതിന്റെ ഫലമാണ്‌ പൗളി അപവർജ്ജന നിയമം - രണ്ട് ഇലക്ട്രോണുകൾക്ക് ഒരിക്കലും ഒരേ ക്വാണ്ടം അവസ്ഥയിൽ ആകാൻ സാധിക്കില്ല. ഇലക്ട്രോണുകളുടെ മിക്ക സ്വഭാവങ്ങളെയും വിശദീകരിക്കാൻ ഈ നിയമത്തിന്‌ സാധിക്കുന്നു. ഉദാഹരണമായി, ആറ്റത്തിൽ എല്ലാ ഇലക്ട്രോണുകളും ഒരേ ഓർബിറ്റലിൽ നിൽക്കാതെ വ്യത്യസ്ത ഓർബിറ്റലുകളിലാകുന്നത് പൗളി അപവർജ്ജനനിയമത്തിന്റെ ഫലമായാണ്‌.[72]

പ്രതീതകണങ്ങൾ[തിരുത്തുക]

ശൂന്യത നിരന്തരമായി പ്രതീതകണങ്ങളുടെ (virtual particles) ജോഡികൾ സൃഷ്ടിച്ചുകൊണ്ടിരിക്കുന്നുണ്ടാകാം എന്ന് ഭൗതികശാസ്ത്രജ്ഞർ കരുതുന്നു. ഇലക്ട്രോൺ-പോസിട്രോൺ ജോഡികൾ ഉൾപ്പെടെയുള്ള ഈ ജോഡികൾ സൃഷ്ടിക്കപ്പെട്ട ഉടനെത്തന്നെ കൂടിച്ചേർന്ന് നശിക്കുന്നു.[73] കണികാജോഡികളെ സൃഷ്ടിക്കാനാവശ്യമായ ഊർജ്ജവ്യതിയാനം ഹൈസ്ൻബർഗ് അനിശ്ചിതത്വതത്വം അനുവദിക്കുന്ന (ΔE·Δt ≥ ħ) പരിധിക്കുള്ളിലാണ്‌. ഊർജ്ജവ്യതിയാനവും കണങ്ങൾ നിലനിൽക്കുന്ന സമയവും തമ്മിൽ ഗുണിച്ചാൽ കിട്ടുന്ന വില ħ-ൽ താഴെയായിരിക്കുന്നിടത്തോളം ശൂന്യതയ്ക്ക് ഇതിനാവശ്യമായ ഊർജ്ജം സംഭാവന ചെയ്യാനാകും. ħ6.6×10−16eV·s ആയതിനാൽ പ്രതീത ഇലക്ട്രോണുകളുടെ ആയുസ്സ് 1.3×10−21 സെക്കന്റിലും കുറവായിരിക്കും.[74]

A sphere with a minus sign at lower left symbolizes the electron, while pairs of spheres with plus and minus signs show the virtual particles
പ്രതീത ഇലക്ട്രോൺ-പോസിട്രോൺ ജോഡികൾ ഒരു ഇലക്ട്രോണിനടുത്തേക്ക് വരുന്നതിന്റെ രേഖാചിത്രം

ഒരു ഇലക്ട്രോൺ-പോസിട്രോൺ പ്രതീതജോഡി നിലവിലുള്ള ഒരു ഇലക്ട്രോണിന്റെ വൈദ്യുതക്ഷേത്രത്തിലുണ്ടെങ്കിൽ പ്രതീതപോസിട്രോൺ യഥാർത്ഥ ഇലക്ട്രോണിലേക്ക് ആകർഷിക്കപ്പെടുകയും പ്രതീത ഇലക്ട്രോൺ വികർഷിക്കപ്പെടുകയും ചെയ്യും. ഈ പ്രതിഭാസം ശൂന്യതയുടെ പോളറൈസേഷൻ എന്നറിയപ്പെടുന്നു. ഇതിന്റെ ഫലമായി ശൂന്യത ഡൈഇലക്ട്രിക് പെർമിറ്റിവിറ്റി 1-ൽ കൂടുതലുള്ള സാധാരണ മാധ്യമങ്ങൾക്ക് സമാനമായി വർത്തിക്കുന്നു. അതായത്, ഇലക്ട്രോണിന്റെ പ്രകടമായ ചാർജ്ജ് യഥാർത്ഥ ചാർജ്ജിലും കുറവായിരിക്കും. ഇലക്ട്രോണിൽ നിന്ന് അകന്നുപോകുന്തോറും ഈ വില കുറഞ്ഞുകൊണ്ടുമിരിക്കും.[75][76] 1997-ൽ ജപ്പാനീസ് കണികാത്വരണിയായ TRISTAN ഈ പ്രതിഭാസം നിരീക്ഷിക്കുകയുണ്ടായി.[77] ഇലക്ട്രോണിന്റെ പിണ്ഡത്തിന്‌ ഷീൽഡിങ്ങ് നൽകാൻ പ്രതീതകണങ്ങൾക്ക് സാധിക്കുന്നു.[78]

ഇലക്ട്രോണിന്റെ കാന്തികമൊമന്റിന്‌ ബോർ മാഗ്നെറ്റോണിൽ നിന്നുള്ള നേരിയ (0.1 ശതമാനത്തിൽ താഴെ) വ്യത്യാസവും വിശദീകരിക്കാൻ പ്രതീതകണങ്ങൾ സഹായിക്കുന്നു.[65][79] കാന്തികമൊമന്റിന്റെ സൈദ്ധാന്തികമായ പ്രവചനവും പരീക്ഷണത്തിലൂടെ കണ്ടെത്തിയ വിലയും തുല്യമാണെന്നുള്ളത് ക്വാണ്ടം വിദ്യുത്ഗതികത്തിന്റെ പ്രധാന നേട്ടങ്ങളിലൊന്നായി കണക്കാക്കപ്പെടുന്നു.[80]

ഉദാത്ത ഭൗതികത്തിൽ കോണീയസംവേഗം, കാന്തികമൊമന്റ് എന്നിവ വ്യാപ്തമുള്ള വസ്തുക്കൾക്ക് മാത്രമുള്ള ഗുണങ്ങളാണ്‌. അതിനാൽ വ്യാപ്തമില്ലാത്ത ഇലക്ട്രോൺ ഈ ഗുണങ്ങളുള്ളതാണെന്നത് സിദ്ധാന്തത്തിലെ പ്രശ്നമായി കണക്കാക്കാപ്പെടാം. ഈ വിരോധാഭാസത്തിന്റെ വിശദീകരണം പ്രതീതഫോട്ടോണുകളുപയോഗിച്ച് നൽകാം. ഇലക്ട്രോണിന്റെ വൈദ്യുതക്ഷേത്രത്തിൽ രൂപമെടുക്കുന്ന പ്രതീതഫോട്ടോണുകൾ ഇലക്ട്രോണിനെ zitterbewegung എന്ന് വിശേഷിപ്പിക്കുന്ന രീതിയിൽ ചലിപ്പിക്കുന്നു.[81] ഈ ചലനത്തിന്റെ ഫലം പുരസ്സരണമടങ്ങിയ വർത്തുളചലനമാണ്‌. സ്പിന്നും കാന്തികമൊമന്റും സൃഷ്ടിക്കുന്നത് ഈ ചലനമാണ്‌.[9][82] സ്പെക്ട്രൽ രേഖകളിലെ ലാംബ് ഷിഫ്റ്റും പ്രതീതഫോട്ടോണുകളെ ഉപയോഗിച്ച് വിശദീകരിക്കാം.[75]

പ്രവർത്തനം[തിരുത്തുക]

ഇലക്ട്രോൺ തനിക്കുചുറ്റും സൃഷ്ടിക്കുന്ന വൈദ്യുതക്ഷേത്രം ധനചാർജ്ജുള്ള വസ്തുക്കളെ ആകർഷിക്കുകയും ഋണചാർജ്ജുള്ളവയെ വികർഷിക്കുകയും ചെയ്യുന്നു. ഈ വൈദ്യുതക്ഷേത്രത്തിന്റെ ശക്തി കൂളോം നിയമമുപയോഗിച്ച് കണ്ടെത്താം. ഇലക്ട്രോണിൽ നിന്നുള്ള ദൂരത്തിന്റെ വർഗ്ഗത്തിന്റെ അനുപാതത്തിൽ വൈദ്യുതക്ഷേത്രത്തിന്റെ ശക്തി ക്ഷയിക്കുന്നു.[83] ചലനാവസ്ഥയിലുള്ള ഇലക്ട്രോൺ ഇതിനു പുറമെ ഒരു കാന്തികക്ഷേത്രത്തിനും കാരണമാകുന്നു.[84] ഇലക്ട്രോണുകളുടെ കൂട്ടത്തോടെയുള്ള ചലനവും കാന്തികക്ഷേത്രത്തിന്റെ തീവ്രതയും തമ്മിലുള്ള ബന്ധം വിശദീകരിക്കുന്ന സമവാക്യമാണ്‌ ആമ്പിയർ-മാക്സ്വെൽ സമവാക്യം. ഇതിന്റെ ഫലമായുണ്ടാകുന്ന വിദ്യുത്കാന്തികപ്രേരണമാണ്‌ വൈദ്യുതമോട്ടോറിന്റെ പ്രവർത്തനത്തിനടിസ്ഥാനം.[85] ചലിക്കുന്ന ചാർജ്ജുകളുടെ ചുറ്റുമുള്ള വിദ്യുത്കാന്തികക്ഷേത്രത്തിന്റെ തീവ്രത ലിയെനാർഡ്-വീച്ചെർട്ട് പൊടെൻഷ്യൽ ഉപയോഗിച്ച് കണക്കുകൂട്ടാം. ഈ കണക്കുകൂട്ടലുകൾ പ്രകാശത്തോടടുത്ത വേഗത്തിൽ ചലിക്കുന്ന കണങ്ങളുടെ കാര്യത്തിലും ശരിയായ വിലകളാണ്‌ നൽകുക.

A graph with arcs showing the motion of charged particles
നിരീക്ഷകനിലേക്കുള്ള ദിശയിലെ B തീവ്രതയുള്ള കാന്തികക്ഷേത്രത്തിലൂടെ v പ്രവേഗവുമായി ചലിക്കുന്ന q ചാർജ്ജുള്ള കണത്തിന്റെ പാത. ഇലക്ട്രോണിന്‌ ഋണചാർജ്ജാണുള്ളതെന്നാൽ അത് മുകളിലേക്ക് വളയുന്നു.

കാന്തികമണ്ഡലത്തിന്റെ സാന്നിദ്ധ്യത്തിൽ ചലിക്കുന്ന ഇലക്ട്രോൺ ലോറെന്റ്സ് ബലത്തിന്‌ വിധേയമാകുന്നു. കാന്തികക്ഷേത്രത്തിനും പ്രവേഗത്തിനും ലംബമായ ദിശയിലാണ്‌ ഈ ബലം. ഇതിന്റെ ഫലമായി ഇലക്ട്രോണിന്റെ പാത ഹെലിക്സ് രൂപത്തിലാകുന്നു. ത്വരണത്തിന്റെ ഫലമായി ഇലക്ട്രോൺ സിൻക്രോട്രോൺ വികിരണത്തിന്റെ രൂപത്തിൽ ഊർജ്ജം പുറത്തുവിടുകയും ചെയ്യുന്നു.[86][87][൫] ഊർജ്ജനഷ്ടത്തിന്റെ ഫലമായി ഇലക്ട്രോണിന്റെ വേഗത കുറയുന്നു. ഇതിന്‌ ഹേതുവായ ബലം അബ്രഹാം-ലോറെന്റ്സ്-ഡിറാക് ബലം എന്നറിയപ്പെടുന്നു. ഇലക്ട്രോണിന്റെ വിദ്യുത്കാന്തികക്ഷേത്രം തന്നെ അതിൽ ചെലുത്തുന്ന സ്വാധീനമാണ്‌ ഈ ബലത്തിന്‌ കാരണം.[88]

ക്വാണ്ടം വിദ്യുത്ഗതികസിദ്ധാന്തമനുസരിച്ച് ഫോട്ടോണുകളാണ്‌ കണങ്ങൾ തമ്മിലുള്ള വിദ്യുത്കാന്തികപ്രവർത്തനങ്ങളെ വഹിക്കുന്നത്. ത്വരണത്തിന്‌ വിധേയമാകാത്ത ഇലക്ട്രോണിന്‌ യഥാർത്ഥ ഫോട്ടോണുകളെ വലിച്ചെടുക്കാനോ പുറത്തുവിടാനോ സാധിക്കുകയില്ല. അപ്രകാരം സംഭവിക്കുന്നത് ഊർജ്ജസംരക്ഷണനിയമത്തിനും സംവേഗസംരക്ഷണനിയമത്തിനും എതിരാകും. എന്നിരുന്നാലും പ്രതീതഫോട്ടോണുകൾക്ക് രണ്ട് ചാർജ്ജിതകണങ്ങൾക്കിടയിൽ സംവേഗം കൈമാറ്റം ചെയ്യിക്കാനാകും. ഈ കൈമാറ്റമാണ്‌ കൂളോം ബലത്തിന്‌ കാരണം.[89] ചലിക്കുന്ന ഇലക്ട്രോണിന്റെ പാതയിൽ മറ്റ് ചാർജ്ജുകൾ മൂലം വ്യതിയാനം വരുന്നത് ഊർജ്ജം പുറത്തുവിടുന്നതിന്‌ കാരണമാകാം. ഇലക്ട്രോണിനെ ത്വരണത്തിന്‌ വിധേയമാക്കുന്നത് ബ്രെംസ്ട്രാലങ് വികിരണം പുറത്തുവിടാൻ കാരണമാകുന്നു.[90]

A curve shows the motion of the electron, a red dot shows the nucleus, and a wiggly line the emitted photon
അണുകേന്ദ്രത്തിന്റെ വൈദ്യുതക്ഷേത്രം മൂലം ഇലക്ട്രോണിന്റെ പാതയിൽ വരുന്ന വ്യതിയാനം ബ്രെംസ്ട്രാലങ് വികിരണത്തിന്‌ കാരണമാകുന്നു. ഊർജ്ജവ്യത്യാസമായ E2 − E1 ഉത്സർജ്ജിക്കപ്പെടുന്ന ഫോട്ടോണിന്റെ ആവൃത്തി നിശ്ചയിക്കുന്നു.

ഫോട്ടോണും ഫ്രീ ഇലക്ട്രോണും തമ്മിലുള്ള ഇലാസ്തികഘട്ടനമാണ്‌ കോം‌പ്റ്റൺ വിസരണം. ഇതിന്റെ ഫലമായി കണങ്ങൾ ഊർജ്ജവും സംവേഗവും പരസ്പരം കൈമാറുന്നു, ഫോട്ടോണിന്റെ തരംഗദൈർഘ്യത്തിൽ വ്യത്യാസം വരുകയും ചെയ്യുന്നു.[൬] തരംഗദൈർഘ്യത്തിൽ വരാവുന്ന കൂടിയ വ്യത്യാസം h/mec ആണ്‌ - ഇത് കോംപ്റ്റൺ തരംഗദൈർഘ്യം എന്നറിയപ്പെടുന്നു.[91] ഇലക്ട്രോണിന്റെ കോംപ്റ്റൺ തരംഗദൈർഘ്യത്തിന്റെ വില 2.43 × 10−12 m. ആണ്‌[7] പ്രകാശം ഉയർന്ന തരംഗദൈർഘ്യമുള്ളതാകുമ്പോൾ തരംഗദൈർഘ്യത്തിലെ വ്യത്യാസം വളരെക്കുറവായിരിക്കും. പ്രകാശവും ഇലക്ട്രോണുകളും തമ്മിലുള്ള ഇത്തരം പ്രവർത്തനം തോംസൺ വിസരണം എന്നറിയപ്പെടുന്നു.[92]

രണ്ട് ചാർജ്ജിതകണങ്ങൾ തമ്മിലുള്ള വിദ്യുത്കാന്തികപ്രവർത്തനത്തിന്റെ ആപേക്ഷികശക്തി ഫൈൻ സ്ട്രക്ചർ സ്ഥിരാങ്കമുപയോഗിച്ച് കണ്ടെത്താം. മാനങ്ങളില്ലാത്ത ഈ സ്ഥിരാങ്കം കണങ്ങൾ കോംപ്റ്റൺ തരംഗദൈർഘ്യത്തിന്റെ അകലത്തിലായിരിക്കെയുള്ള വിദ്യുത്സ്ഥിതികോർജ്ജത്തിന്റെയും കണത്തിന്റെ നിശ്ചലോർജ്ജത്തിന്റെയും അനുപാതമാണ്‌. α എന്ന ചിഹ്നം ഇതിനെ സൂചിപ്പിക്കാനുപയോഗിക്കുന്നു. ഇതിന്റെ വില 7.297353×10−3 ആണ്‌, അതായത് ഏതാണ്ട് 1137.[7]

ഇലക്ട്രോണുകളും പോസിട്രോണുകളും കൂടിച്ചേരുമ്പോൾ രണ്ടോ അതിലേറെയോ ഗാമ രശ്മി ഫോട്ടോണുകൾ പുറത്തുവിട്ട് അവ നശിപ്പിക്കപ്പെടുന്നു. ഇലക്ട്രോണിന്റെയും പോസിട്രോണിന്റെയും സംവേഗം കുറവാണെങ്കിൽ നശീകരണത്തിനുമുമ്പ് അവ പോസിട്രോണിയം ആറ്റമായി മാറാം. നശീകരണത്തോടനുബന്ധിച്ചുണ്ടാകുന്ന ഗാമ രശ്മി ഫോട്ടോണുകളുടെ ഊർജ്ജം 1.022 MeV ആണ്‌.[93][94] അണുകേന്ദ്രം, മറ്റ് ചാർജ്ജിതകണങ്ങൾ എന്നിവയുടെ സാന്നിദ്ധ്യത്തിൽ ഉന്നതോർജ്ജഫോട്ടോണുകൾക്ക് പെയർ പ്രൊഡക്ഷൻ എന്ന പ്രതിഭാസം വഴി ഇലക്ട്രോൺ-പോസിട്രോൺ ജോഡിയായി മാറാനും സാധിക്കും.[95][96]

വിദ്യുത്ദുർബലപ്രവർത്തനസിദ്ധാന്തമനുസരിച്ച് ഇലക്ട്രോൺ വേവ്ഫങ്ഷന്റെ ഇടംകൈയൻ ഭാഗം ഇലക്ട്രോൺ ന്യൂട്രിനോയുമായി ഒരു വീക് ഐസോസ്പിൻ ദ്വന്ദ്വം നിർമ്മിക്കുന്നു. W ബോസോൺ വലിച്ചെടുക്കുകയോ പുറത്തുവിടുകയോ ചെയ്തുകൊണ്ട് ചാർജ്ജ്ഡ് കറന്റ് പ്രവർത്തനം വഴി ദ്വന്ദ്വത്തിലെ ഒരംഗത്തിന്‌ മറ്റേ അംഗമായി മാറാനാകും. W ബോസോണിനും ചാർജ്ജുണ്ട് എന്നതിനാൽ ഈ പ്രവർത്തനത്തിൽ ചാർജ്ജ് സംരക്ഷിക്കപ്പെടുന്നു. ചാർജ്ജ്ഡ് കറന്റ് പ്രവർത്തനങ്ങളാണ്‌ റേഡിയോആക്റ്റീവ് ആറ്റങ്ങളിലെ ബീറ്റക്ഷയത്തിന്‌ കാരണമാകുന്നത്. Z ബോസോണിന്റെ കൈമാറ്റം വഴി ഇലക്ട്രോണിനും ഇലക്ട്രോൺ ന്യൂട്രിനോയ്ക്കും ന്യൂട്രൽ കറണ്ട് പ്രവർത്തനത്തിലും പങ്കെടുക്കാം. ഇതാണ്‌ ന്യൂട്രിനോ-ഇലക്ട്രോൺ ഇലാസ്തികവിസരണത്തിന്‌ കാരണം.[97]

ആറ്റങ്ങളും തന്മാത്രകളും[തിരുത്തുക]

A table of five rows and five columns, with each cell portraying a color-coded probability density
ഹൈഡ്രജന്റെ ആദ്യത്തെ ചില അറ്റോമിക ഓർബിറ്റലുകളുടെ രേഖാചിത്രം. നിറം സംഭാവ്യതാസാന്ദ്രതയെ സൂചിപ്പിക്കുന്നു.

ഇലക്ട്രോണുകൾ അണുകേന്ദ്രവുമായി കൂളോം ബലം വഴി ബന്ധിതമാകാം. ഒരു അണുകേന്ദ്രവുമായി ബന്ധിതമായ ഇലക്ട്രോണുകളുടെ കൂട്ടമാണ്‌ ആറ്റം. ഇലക്ട്രോണുകളുടെ എണ്ണവും അണുകേന്ദ്രത്തിന്റെ ചാർജ്ജും വ്യത്യസ്തമാണെങ്കിൽ അത്തരം ആറ്റങ്ങളെ അയോണുകൾ എന്ന് വിളിക്കുന്നു. ബന്ധിതമായ ഇലക്ട്രോണിന്റെ തരംഗസ്വഭാവം അറ്റോമിക് ഓർബിറ്റൽ എന്ന ഫങ്ഷൻ വഴി വിശദീകരിക്കുന്നു. ക്വാണ്ടം സംഖ്യകളുടെ ഒരു കൂട്ടമാണ്‌ അറ്റോമിക ഓർബിറ്റുകളെ പൂർണ്ണമായി നിർവചിക്കുന്നത്. ഊർജ്ജം, കോണീയസംവേഗം, കോണീയസംവേഗത്തിന്റെ പ്രൊജക്ഷൻ എന്നിവയാണ്‌ ഈ ക്വാണ്ടം സംഖ്യകൾ കൊണ്ടുദ്ദേശ്യം. അണുകേന്ദ്രത്തിനു ചുറ്റുമുള്ള ഇലക്ട്രോണുകൾക്ക് ഈ പരിമാണങ്ങൾക്ക് നിശ്ചിത വിലകളേ ഉണ്ടാകൂ. പൗളി അപവർജ്ജനനിയമമനുസരിച്ച് ഒരു ഓർബിറ്റലിൽ രണ്ട് ഇലക്ട്രോണുകൾക്കേ നിലനിൽക്കാനാകൂ - അവയുടെ സ്പിൻ ക്വാണ്ടം സംഖ്യ വ്യത്യസ്തമായിരിക്കുകയും വേണം.

ഊർജ്ജവ്യത്യാസങ്ങൾക്ക് തുല്യമായ ഊർജ്ജമുള്ള ഫോട്ടോണുകൾ ഉത്സർജ്ജിക്കുകയോ ആഗിരണം ചെയ്യുകയോ വഴി ഇലക്ട്രോണുകൾക്ക് ഒരു ഓർബിറ്റലിൽ നിന്ന് മറ്റൊന്നിലേക്ക് മാറാനാകും.[98] കണങ്ങളുമായുള്ള ഘട്ടനങ്ങൾ, ഓഗർ പ്രഭാവം എന്നിവ വഴിയും ഓർബിറ്റൽ മാറ്റം സംഭവിക്കാം.[99] ആറ്റത്തിൽ നിന്ന് പുറത്തുകടക്കണമെങ്കിൽ ഇലക്ട്രോണിന്‌ ബന്ധനോർജ്ജത്തിലധികം ഊർജ്ജം ലഭിക്കേണ്ടതായുണ്ട്. ഫോട്ടോഇലക്ട്രിക് പ്രഭാവത്തിൽ ഇലക്ട്രോൺ ആറ്റത്തിന്റെ അയണീകരണ ഊർജ്ജത്തിലുമേറെ ഊർജ്ജമുള്ള ഫോട്ടോൺ ആഗിരണം ചെയ്യുമ്പോൾ ഇതാണ്‌ സംഭവിക്കുന്നത്.[100]

ഇലക്ട്രോണുകളുടെ കോണീയസംവേഗം ക്വാണ്ടൈസ്ഡ് ആണ്‌ - അതായത്, ഇതിന്‌ നിശ്ചിതവിലകളേ സ്വീകരിക്കാനാകൂ. ഇലക്ട്രോണിന്‌ ചാർജ്ജുള്ളതിനാൽ കോണീയസംവേഗത്തിന്‌ സമാന്തരമായ കാന്തികമൊമന്റും അതിനുണ്ട്. ആറ്റത്തിന്റെ കാന്തികമൊമന്റ് ഇലക്ട്രോണുകളുടെയും അണുകേന്ദ്രത്തിന്റെയും ഓർബിറ്റൽ, സ്പിൻ കാന്തികമൊമന്റുകളുടെ തുകയാണ്‌. ഇതിൽ അണുകേന്ദ്രത്തിന്റെ കാന്തികമൊമന്റ് ഇലക്ട്രോണുകളുടേതുമായി താരതമ്യം ചെയ്യുമ്പോൾ വളരെ ചെറുതാണ്‌. ഒരേ ഓർബിറ്റലിൽ സ്ഥിതിചെയ്യുന്ന രണ്ട് ഇലക്ട്രോണുകളുടെ കാന്തികമൊമന്റുകൾ പരസ്പരം റദ്ദാക്കുന്നു.[101]

ക്വാണ്ടം ബലതന്ത്രത്തിന്റെ നിയമങ്ങൾക്ക് വിധേയമായുള്ള വിദ്യുത്കാന്തികപ്രവർത്തനങ്ങളാണ്‌ രാസബന്ധനങ്ങൾക്ക് കാരണമാകുന്നത്.[102] ആറ്റങ്ങൾ ഇലക്ട്രോണുകളെ പങ്കുവയ്ക്കുകയോ കൈമാറുകയോ ചെയ്യുമ്പോഴാണ്‌ ശക്തിയേറിയ രാസബന്ധനങ്ങൾ രൂപം കൊള്ളുന്നത്. ഇങ്ങനെ തന്മാത്രകൾ രൂപമെടുക്കുന്നു.[12] ഒരു തന്മാത്രയുടെ ഭാഗമായ ഇലക്ട്രോണുകൾ വിവിധ അണുകേന്ദ്രങ്ങളുടെ വിദ്യുത്കാന്തികക്ഷേത്രങ്ങളുടെ സ്വാധീനത്തിൽ വരുന്നു. സ്വതന്ത്ര ആറ്റങ്ങളിൽ അറ്റോമിക് ഓർബിറ്റലുകളിൽ സ്ഥിതിചെയ്യുന്നതിന്‌ സമാനമായി തന്മാത്രകളിൽ മോളിക്യുലാർ ഓർബിറ്റലുകളിലാണ്‌ ഇവ സ്ഥിതിചെയ്യുക.[103] ഇലക്ട്രോൺ ജോടികളുടെ സാന്നിദ്ധ്യം തന്മാത്രകളുടെ ഘടനയിലെ പ്രധാന ഘടകമാണ്‌. വിപരീത സ്പിന്നുകളുള്ളതും പൗളി അപവർജ്ജനനിയമമനുസരിച്ചുകൊണ്ടുതന്നെ ഒരേ ഓർബിറ്റലിൽ സ്ഥിതിചെയ്യുന്നതുമായ രണ്ട് ഇലക്ട്രോണുകളാണ്‌ ഒരു ഇലക്ട്രോൺ ജോഡിയിലുണ്ടാവുക. വിവിധ മോളിക്യുലാർ ഓർബിറ്റലുകളിൽ ഇലക്ട്രോണുകളുടെ സംഭാവ്യതാസാന്ദ്രത വിവിധതരത്തിലായിരിക്കും. ഉദാഹരണമായി, ബോണ്ടഡ് ജോഡികളിൽ അണുകേന്ദ്രങ്ങൾക്ക് അടുത്താണ് ഇലക്ട്രോണിനെ കണ്ടെത്താൻ കൂടുതൽ സംഭാവ്യത. എന്നാൻ നോൺ-ബോണ്ടഡ് ജോഡികളിലാകട്ടെ ഇലക്ട്രോണുകളെ അണുകേന്ദ്രങ്ങൾക്ക് കൂടുതൽ ദൂരെ കണ്ടെത്താനാണ്‌ സംഭാവ്യതയേറെയും.[104]

ചാലകത[തിരുത്തുക]

Four bolts of lightning strike the ground
ഇടിമിന്നൽ എന്നത് അടിസ്ഥാനപരമായി ഇലക്ട്രോണുകളുടെ ഒഴുക്കാണ്‌.[105] മിന്നലിനാവശ്യമായ പൊട്ടൻഷ്യൽ സൃഷ്ടിക്കപ്പെടുന്നത് ട്രൈബോഇലക്ട്രിക് പ്രഭാവം വഴിയാകാം.[106][107]

ഒരു വസ്തുവിൽ അണുകേന്ദ്രങ്ങളുടെ ധനചാർജ്ജിനെ റദ്ദാക്കാനാവശ്യമായത്ര ഇലക്ട്രോണുകൾ ഇല്ലാതിരിക്കുകയോ ആവശ്യത്തിലധികം ഇലക്ട്രോണുകൾ ഉണ്ടായിരിക്കുകയോ ചെയ്യുമ്പോൾ അത് ആകെപ്പാടെ ചാർജ്ജിതമാകുന്നു. ഇലക്ട്രോണുകളുടെ എണ്ണം ആവശ്യത്തിലധികമാകുമ്പോൾ ഋണചാർജ്ജും ആവശ്യത്തിൽ കുറവാകുമ്പോൾ ധനചാർജ്ജുമാണ്‌ വസ്തുവിന്‌ ലഭിക്കുക. ട്രൈബോസ്കോപിക് പ്രഭാവം വഴി ഉരസുന്നതിന്റെ ഫലമായി വസ്തുക്കൾ ചാർജ്ജിതമാകാം.[108]

ശൂന്യതയിൽ സ്വതന്ത്രമായി ചലിക്കുന്ന ഇലക്ട്രോണുകൾ ഫ്രീ ഇലക്ട്രോണുകൾ എന്നറിയപ്പെടുന്നു. ലോഹങ്ങളിലെ ഇലക്ട്രോണുകളും ഫ്രീ ഇലക്ട്രോണുകളുടെ സ്വഭാവമാണ്‌ കാണിക്കുക. യഥാർത്ഥത്തിൽ, നാം ലോഹങ്ങളിലെ ഇലക്ട്രോണുകൾ എന്ന് സാധാരണ വിളിക്കുന്ന കണങ്ങൾ ക്വാസി-ഇലക്ട്രോണുകളാണ്‌. അവയ്ക്ക് ഇലക്ട്രോണുകളുടേതിന്‌ സമാനമായ വൈദ്യുതചാർജ്ജ്, സ്പിൻ, കാന്തികമൊമന്റ് എന്നിവ ഉണ്ടാകുമെങ്കിലും പിണ്ഡം വ്യത്യസ്തമായിരിക്കും.[109] ശൂന്യതയിലെയും ലോഹങ്ങളിലെയും ഫ്രീ ഇലക്ട്രോണുകൾ ചലിക്കുമ്പോൾ അവ ചാർജ്ജിന്റെ ഒഴുക്കായ വൈദ്യുതിക്ക് കാരണമാകുന്നു. ഇത് കാന്തികക്ഷേത്രവും സൃഷ്ടിക്കുന്നു. വൈദ്യുതി കാന്തികക്ഷേത്രത്തിന്റെ സൃഷ്ടിക്ക് കാരണമാകുന്നതുപോലെ ചലിക്കുന്ന കാന്തികക്ഷേത്രത്തിന്‌ വൈദ്യുതിയും സൃഷ്ടിക്കാൻ സാധിക്കും. ഈ പ്രഭാവങ്ങളെല്ലാം മാക്സ്വെൽ സമവാക്യങ്ങളുപയോഗിച്ച് വിശദീകരിക്കാനാകും.[110]

ഒരു നിശ്ചിത താപനിലയിൽ ഓരോ പദാർത്ഥത്തിനും നിശ്ചിത വൈദ്യുതചാലകതയുണ്ടാകും. പൊടൻഷ്യലിനനുസരിച്ച് വൈദ്യുതി വ്യത്യാസപ്പെടുന്നത് ചാലകതയനുസരിച്ചാണ്‌. ചെമ്പ്, സ്വർണ്ണം മുതലായ ലോഹങ്ങൾ വൈദ്യുതിയുടെ നല്ല ചാലകങ്ങളാണ്‌. സ്ഫടികം, ടെഫ്ലോൺ മുതലായ വസ്തുക്കളാകട്ടെ അചാലകങ്ങളുമാണ്‌. ഡൈഇലക്ട്രിക് പദാർത്ഥങ്ങളിൽ ഇലക്ട്രോണുകൾ അണുകേന്ദ്രങ്ങളുമായി ബന്ധിക്കപ്പെട്ടിരിക്കുന്നു എന്നതിനാൽ അവ അചാലകങ്ങളായി വർത്തിക്കുന്നു. ലോഹങ്ങളിലെ ഇലക്ട്രോൺ ബാൻഡ് ഘടന ഇലക്ട്രോണുകളെ ഫ്രീ ഇലക്ട്രോണുകൾക്ക് സമാനമാക്കുന്നു. ഇവ പ്രത്യേക അണുകേന്ദ്രവുമായി ബന്ധിക്കപ്പെട്ടിരിക്കുന്നില്ല എന്നതിനാൽ വൈദ്യുതക്ഷേത്രത്തിന്റെ സാന്നിദ്ധ്യത്തിൽ അവ ഫെർമി വാതകങ്ങളെപ്പോലെ വർത്തിക്കുകയും ഇലക്ട്രോണുകൾ സ്വതന്ത്രമായി ലോഹത്തിൽ നീങ്ങുകയും ചെയ്യുന്നു.[111] അർദ്ധചാലകങ്ങളിൽ ചാലകത ഈ രണ്ട് പരിധികൾക്കിടയിലാണ്‌.[112]

ഇലക്ട്രോണുകളും ആറ്റങ്ങളും തമ്മിൽ നിരന്തരം നടക്കുന്ന ഘട്ടനങ്ങൾ മൂലം ചാലകങ്ങളിൽ ഇലക്ട്രോണുകളുടെ ശരാശരി പ്രവേഗം സെക്കന്റിൽ മില്ലിമീറ്ററുകൾ മാത്രമാണ്‌. എന്നാൽ ചാലകത്തിന്റെ ഒരു ഭാഗത്ത് വൈദ്യുതിയിൽ വരുന്ന മാറ്റങ്ങൾ മറ്റു ഭാഗങ്ങളിലെ വൈദ്യുതിയിൽ മാറ്റം വരുത്തുന്ന വേഗം പ്രകാശവേഗത്തിന്റെ 75 ശതമാനത്തോളം വരും.[113] വൈദ്യുതസിഗ്നലുകൾ തരംഗരൂപത്തിൽ സഞ്ചരിക്കുന്നതിനാലാണിത്. തരംഗങ്ങളുടെ വേഗം മാധ്യമത്തിന്റെ ഡൈഇലക്ട്രിക് സ്ഥിരാങ്കത്തെ ആശ്രയിച്ചാണിരിക്കുന്നത്.[114]

ഡീലോക്കലൈസ്ഡ് ഇലക്ട്രോണുകൾക്ക് ആറ്റങ്ങൾക്കിടയിൽ താപം വഹിക്കാൻ കഴിയുമെന്നതിനാൽ ലോഹങ്ങൾ നല്ല താപചാലകങ്ങളാണ്‌. വിദ്യുത്ചാലക്തയിൽ നിന്ന് വ്യത്യസ്തമായി താപചാലകത താപനിലയെ കാര്യമായി ആശ്രയിക്കുന്നില്ല. ഗണിതപരമായി ഇതിനെ വീഡെമാൻ-ഫ്രാൻസ് നിയമമുപയോഗിച്ച് വിശദീകരിക്കാം.[111] താപചാലകതയുടെയും വിദ്യുത്ചാലകതയുടെയും അനുപാതം താപനിയയുടെ വർഗ്ഗത്തിന്‌ ആനുപാതികമാണെന്ന് ഈ നിയമം പറയുന്നു. ലോഹപരലിൽ താപോർജ്ജം മൂലമുണ്ടാകുന്ന ക്രമമില്ലായ്മ വൈദ്യുതപ്രതിരോധം വർദ്ധിപ്പിക്കുന്നു. ഇതിന്റെ ഫലമായി വൈദ്യുതി താപനില്ലയ്ക്കനുസരിച്ച് വ്യത്യാസപ്പെടുന്നു.[115]

ക്രിട്ടിക്കൽ താപനില എന്നു വിളിക്കുന്ന ഒരു താപനിലയിലും താഴെ തണുപ്പിക്കുകയാണെങ്കിൽ പദാർത്ഥങ്ങൾക്ക് അവസ്ഥാന്തരം വരുകയും അവയുടെ വൈദ്യുതപ്രതിരോധം പൂർണ്ണമായി ഇല്ലാതാവുകയും ചെയ്യുന്നു. ഈ പ്രതിഭാസത്തെ അതിചാലകത എന്ന് വിളിക്കുന്നു. ഇലക്ട്രോൺ ജോഡികൾ ബോസ്-ഐൻസ്റ്റൈൻ കണ്ടൻസേറ്റ് ക്വാണ്ടം അവസ്ഥയിലേക്ക് മാറുന്നതാണ്‌ ബി.സി.എസ്. സിദ്ധാന്തത്തിൽ ഇതിന്റെ വിശദീകരണം. ഫോണോണുകൾ വഴി ഈ കൂപ്പർ ജോഡികളുടെ ചലനം പരലിന്റെ വൈബ്രേഷനുകളുമായി കപ്പിൾ ചെയ്യുന്നു. ഇതിന്റെ ഫലമായി, ആറ്റങ്ങളുമായി സാധാരണ നടക്കുന്ന വൈദ്യുതപ്രതിരോധത്തിന്‌ ഹേതുവായ ഘട്ടനങ്ങൾ ഒഴിവാകുന്നു.[116] (കൂപ്പർ ജോഡികളുടെ ആരം ഏതാണ്ട് 100 നാനോമീറ്ററാണ്‌. അതിനാൽ അവയ്ക്ക് പരസ്പരം കവിഞ്ഞുകിടക്കാം.)[117] എന്നാൽ ഉയർന്ന താപനിലയിലെ അതിചാലകങ്ങളെ വിശദീകരിക്കാൻ ഈ സിദ്ധാന്തത്തിന്‌ സാധിക്കില്ല.

ലോഹങ്ങൾക്കുള്ളിലെ ക്വാസികണങ്ങളായ ഇലക്ട്രോണുകൾ കേവലപൂജ്യത്തോടടുത്ത താപനിലയിൽ ഇടുങ്ങിയ സ്ഥലത്ത് ഒതുക്കപ്പെട്ടാൽ സ്പൈനോൺ, ഹോളോൺ എന്നീ ക്വാസികണങ്ങളായി വിഘടിച്ചാലെന്നപോലെ വർത്തിക്കുന്നു.[118][119] സ്പൈനോണിന്‌ സ്പിന്നും കാന്തികമൊമന്റുമുണ്ടാകും; ഹോളോണിനാകട്ടെ, വൈദ്യുതചാർജ്ജും.

ചലനവും ഊർജ്ജവും[തിരുത്തുക]

ഐൻസ്റ്റൈന്റെ വിശിഷ്ട ആപേക്ഷികതാസിദ്ധാന്തമനുസരിച്ച് ഇലക്ട്രോണിന്റെ വേഗം പ്രകാശപ്രവേഗത്തോടടുക്കുമ്പോൾ നിരീക്ഷകന്‌ ആപേക്ഷികമായി അതിന്റെ പിണ്ഡം വർദ്ധിക്കുന്നു. അതായത്, ഇലക്ട്രോണിന്റെ വേഗം കൂടുതോറും അതിനെ ത്വരണത്തിന്‌ വിധേയമാക്കുക കൂടുതൽ വിഷമകരമാകുന്നു. ഇലക്ട്രോണിന്റെ വേഗം ശൂന്യതയിലെ പ്രകാശപ്രവേഗത്തിന്‌ വളരെയടുത്തെത്താമെങ്കിലും തുല്യമാകാനാവില്ല. എന്നിരുന്നാലും, പ്രകാശവേഗം ശൂന്യതയിലേതിന്റെ ചെറിയൊരു ഭാഗം മാത്രമായ ജലം പോലുള്ള മാധ്യമങ്ങളിൽ ഇലക്ട്രോണുകൾക്ക് പ്രകാശത്തെക്കാൾ വേഗത്തിൽ സഞ്ചരിക്കാനാകും. ഇത്തരം ഇലക്ട്രോണുകൾ മാധ്യമവുമായി പ്രവർത്തിച്ച് ചെറ്യെൻ‌കോഫ് വികിരണം പുറപ്പെടുവിക്കുന്നു.[120]

The plot starts at zero and curves sharply upward toward the right
ലോറന്റ്സ് ഘടകത്തിന്റെ ഗ്രാഫ്. നിശ്ചലവസ്തുക്കളിൽ ഈ ഘടകത്തിന്റെ വില ഒന്നാണ്‌. വേഗം വർദ്ധിച്ച് പ്രകാശവേഗത്തോടടുക്കുമ്പോൾ വില അനന്തമായി മാറുന്നു.

വിശിഷ്ട ആപേക്ഷികത മൂലമുള്ള പ്രഭാവങ്ങൾ ലോറന്റ്സ് ഘടകത്തെ ആശ്രയിച്ചിരിക്കുന്നു. ഇതിന്റെ വില \scriptstyle\gamma=1/ \sqrt{ 1-{v^2}/{c^2} } ആണ്‌. v പ്രവേഗത്തോടെ ചലിക്കുന്ന ഇലക്ട്രോണിന്റെ ഗതികോർജ്ജം

\displaystyle K_e = (\gamma - 1)m_e c^2,

ആണ്‌. ഉദാഹരണമായി, സ്റ്റാൻഫോർഡ് രേഖീയത്വരണിക്ക് ഇലക്ട്രോണുകളെ 51 GeV ഊർജ്ജം വരെ ത്വരിതപ്പെടുത്താനാകുന്നു[121] ആതായത്, ലോറന്റ്സ് ഘടകത്തിന്റെ വില 1,00,000 വരെ. ഇത്തരം ഇലക്ട്രോണിന്റെ ആപേക്ഷികതയനുസരിച്ചുള്ള സംവേഗം ഉദാത്തബലതന്ത്രം പ്രവചിക്കുന്നതിന്റെ 1,00,000 ഇരട്ടിയായിരിക്കും.[൭]

ഇലക്ട്രോണുകൾക്ക് തരംഗസ്വഭാവമുള്ളതിനാൽ അവയ്ക്ക് വേഗമനുസരിച്ച് വ്യത്യാസപ്പെടുന്ന ഡി ബ്രോളി തരംഗദൈർഘ്യമുണ്ട്. ഇതിന്റെ വില λe = h/p ആണ്‌ (ഇവിടെ h പ്ലാങ്ക് സ്ഥിരാങ്കവും p ഇലക്ട്രോണിന്റെ പ്രവേഗവുമാണ്‌).[43] 51 GeV ഊർജ്ജമുള്ള മേൽപറഞ്ഞ ഇലക്ട്രോണിന്റെ ഡി ബ്രോളി തരംഗദൈർഘ്യം ഏതാണ്ട് 2.4×10−17m ആണ്‌. അണുകേന്ദ്രത്തെക്കാൾ ചെറിയ ഘടനകളെക്കുറിച്ച് പഠിക്കാൻ ഈ തരംഗദൈർഘ്യം പര്യാപ്തമാണ്‌.[122]

രൂപവത്കരണം[തിരുത്തുക]

A photon strikes the nucleus from the left, with the resulting electron and positron moving off to the right
ഫോട്ടോണും അണുകേന്ദ്രവും തമ്മിലുള്ള ഘട്ടനത്തിന്റെ ഫലമായി നടക്കുന്ന പെയർ പ്രൊഡക്ഷൻ

പ്രപഞ്ചത്തിന്റെ ആദിമാവസ്ഥ വിവരിക്കുന്ന സിദ്ധാന്തങ്ങളിൽ ഏറ്റവുമധികം അംഗീകരിക്കപ്പെട്ടിരിക്കുന്നത് മഹാവിസ്ഫോടനസിദ്ധാന്തമാണ്‌.[123] മഹാവിസ്ഫോടനത്തിനുശേഷമുള്ള ആദ്യത്തെ മില്ലിസെക്കന്റ് സമയം പ്രപഞ്ചത്തിന്റെ താപനില നൂറ് കോടി കെൽവിനും മുകളിലായിരുന്നു. ഫോട്ടോണുകൾക്ക് മെഗാ ഇലക്ട്രോൺ വോൾട്ട് കണക്കിന്‌ ഊർജ്ജവുമുണ്ടായിരുന്നു. ഈ ഊർജ്ജം പരസ്പരഘട്ടനങ്ങൾ വഴി ഇലക്ട്രോൺ-പോസിട്രോൺ ജോഡികളെ സൃഷ്ടിക്കാൻ പര്യാപ്തമായിരുന്നു,

\gamma + \gamma \leftrightharpoons \mathrm e^{+} + \mathrm e^{-},

പോസിട്രോൺ-ഇലക്ട്രോൺ ജോഡികൾ ഘട്ടനത്തിന്റെ ഫലമായി ഗാമ വികിരണം പുറപ്പെടുവിച്ച് നശിക്കുകയും ചെയ്തു. ഈ സമയത്ത് ഇലക്ട്രോണുകളും പോസിട്രോണുകളും സമീകരണത്തിൽ (equilibrium) നിലകൊണ്ടു. പതിനഞ്ച് സെക്കന്റിന്‌ ശേഷം പ്രപഞ്ചത്തിന്റെ താപനില ഇലക്ട്രോൺ-പോസിട്രോൺ ജോഡികളുടെ രൂപവത്കരണം സാധ്യമാക്കുന്ന നിലയിലും താഴ്ന്നു. ബാക്കിയായ ഇലക്ട്രോണുകളിലും പോസിട്രോണുകളിലും ഭൂരിഭാഗവും പരസ്പരം കൂട്ടിയിടിച്ച് നശിച്ചു. ഇതിന്റെ ഫലമായി പ്രപഞ്ചത്തെ അല്പസമയത്തേക്കുകൂടി ചൂടാക്കാൻ പര്യാപ്തമായ ഗാമ വികിരണങ്ങൾ പുറത്തുവന്നു.[124]

ലെപ്റ്റോജെനെസിസിന്റെ ഫലമായി പോസിട്രോണുകളെക്കാൾ ഇലക്ട്രോണുകളാണ്‌ രൂപം കൊണ്ടത്. എന്നാൽ ഇതിന്റെ കാരണം വ്യക്തമല്ല.[125] ഇതുമൂലം ആദ്യമുണ്ടായിരുന്ന ഇലക്ട്രോണുകളിൽ നൂറുകോടിയിലൊരു ഭാഗത്തോളം ഘട്ടനങ്ങളെ അതിജീവിച്ചു. ഈ ആധിക്യം പ്രോട്ടോണുകൾക്ക് ആന്റിപ്രോട്ടോണുകളുമായുണ്ടായിരുന്ന ആധിക്യവുമായി പൊരുത്തപ്പെട്ടതിനാൽ (ഇത് ബാരിയോൺ അസമമിതി എന്നറിയപ്പെടുന്നു) പ്രപഞ്ചത്തിന്റെ മൊത്തം ചാർജ്ജ് പൂജ്യമായിരുന്നു.[126][127] ബാക്കിയായ പ്രോട്ടോണുകളും ന്യൂട്രോണുകളും പരസ്പരപ്രവർത്തനത്തിൽ ഏർപ്പെട്ടു. ഈ പ്രക്രിയ ന്യൂക്ലിയോസിന്തെസിസ് എന്നറിയപ്പെടുന്നു. ഇതിന്റെ ഫലമായി ഹൈഡ്രജൻ, ഹീലിയം, ലിതിയം എന്നിവയുടെ അണുകേന്ദ്രങ്ങൾ രൂപം കൊണ്ടു. മഹാവിസ്ഫോടനത്തിന്‌ അഞ്ച് മിനിറ്റ് ശേഷമാണ്‌ ഇത് പാരമ്യത്തിലെത്തിയത്..[128] അവശേഷിച്ച് ന്യൂട്രോണുകൾ ആയിരം സെക്കന്റോളം അർദ്ധായുസ്സോടെ ഋണബീറ്റാക്ഷയത്തിന്‌ വിധേയമായി. ഈ പ്രക്രിയയുടെ ഫലമായി ഒരു പ്രോട്ടോണും ഒരു ഇലക്ട്രോണും ഒരു ആന്റിന്യൂട്രിനോയും പുറത്തുവന്നു

\mathrm n \Rightarrow \mathrm p + \mathrm e^{-} + \bar{\mathrm \nu}_\mathrm e,

അടുത്ത മൂന്നോ നാലോ ലക്ഷം വർഷക്കാലം ഇലക്ട്രോണുകൾക്ക് അണുകേന്ദ്രവുമായി ബന്ധിക്കപ്പെടാനാകാത്തത്ര ഊർജ്ജമുണ്ടായിരുന്നു.[129] ഇതിനുശേഷമുള്ള കാലം റീകോമ്പിനേഷൻ യുഗം എന്നറിയപ്പെടുന്നു. ഇക്കാലത്ത് ഇലക്ട്രോണുകൾ അണുകേന്ദ്രങ്ങളുമായി ബന്ധിക്കപ്പെടുകയും പ്രപഞ്ചം വികിരണത്തിന്‌ സുതാര്യമായി മാറുകയും ചെയ്തു.[130]

മഹാവിസ്ഫോടനത്തിന്‌ ഏതാണ്ട് പത്ത് ലക്ഷം വർഷങ്ങൾക്കുശേഷം നക്ഷത്രങ്ങളുടെ ആദ്യ തലമുറ രൂപമെടുക്കാൻ തുടങ്ങി.[130] നക്ഷത്രങ്ങളിലെ ന്യൂക്ലിയോസിന്തെസിസിന്റെ ഫലമായി അണുകേന്ദ്രസംയോജനത്തിലൂടെ പോസിട്രോണുകൾ സൃഷ്ടിക്കപ്പെടാനാരംഭിച്ചു. ഇവ ഉടനടി ഇലക്ട്രോണുകളുമായി കൂടിച്ചേർന്ന് ഗാമ വികിരണം പുറപ്പെടുവിച്ച് നശിച്ചു. ഇലക്ട്രോണുകളുടെ എണ്ണത്തിലുള്ള കുറവും ഇതിനോടനുബന്ധിച്ച് ന്യൂട്രോണുകളുടെ എണ്ണത്തിലുള്ള വർദ്ധനയുമാണ്‌ ഈ പ്രക്രിയയുടെ പരിണതഫലം. എന്നാൽ നക്ഷത്രപരിണാമത്തിന്റെ ഫലമായി റേഡിയോആക്റ്റീവ് ഐസോടോപ്പുകൾ സൃഷ്ടിക്കപ്പെടുകയും അവ ബീറ്റക്ഷയത്തിന്‌ വിധേയമായി അണുകേന്ദ്രത്തിൽ നിന്ന് ഇലക്ട്രോൺ ഉത്സർജ്ജിക്കുകയും ചെയ്യാം.[131] കോബാൾട്ട്-60 ഐസോട്ടോപ് (60Co) ബീറ്റക്ഷയത്തിന്റെ ഫലമായി നിക്കൽ-60 (60Ni) ആയി മാറുന്നത് ഇതിനുദാഹരണമാണ്‌.[132]

A branching tree representing the particle production
കോസ്മിക് രശ്മി ഭൗമാന്തരീക്ഷത്തിൽ പ്രവേശിച്ചതുമൂലമുണ്ടാകുന്ന കണികാവർഷം

20 സൗരപിണ്ഡത്തിലേറെ വലിപ്പമുള്ള നക്ഷത്രങ്ങൾ ഗുരുത്വഫലമായുള്ള സങ്കോചം വഴി തമോദ്വാരങ്ങളായി മാറാം.[133] ഉദാത്തഭൗതികമനുസരിച്ച് ഇവയുടെ ഗുരുത്വാകർഷണമണ്ഡലത്തിൽ നിന്ന് രക്ഷപ്പെടാൻ പ്രകാശത്തിനുപോലുമാകില്ല. എന്നാൽ ക്വാണ്ടം പ്രഭാവങ്ങൾ മൂലം അവയുടെ ഷ്വാർസ്ചൈൽഡ് ആരത്തിൽ നിന്നും വികിരണങ്ങൾ പുറപ്പെടാം. ഇത് ഹോക്കിങ് വികിരണം എന്നറിയപ്പെടുന്നു. ഇവിടെ ഇലക്ട്രോണുകളും പോസിട്രോണുകളും രൂപം കൊള്ളുന്നുണ്ടാകാം എന്ന് കരുതപ്പെടുന്നു.

ഇലക്ട്രോൺ-പോസിട്രോൺ പ്രതീതജോഡികൾ സംഭവചക്രവാളത്തിനടുത്ത് രൂപം കൊള്ളാം. ഇങ്ങനെ രൂപമെടുക്കുന്ന ജോഡിയിൽ ഒരംഗം സംഭവചക്രവാളത്തിന്‌ പുറത്തായിരിക്കാൻ സാധ്യതയുണ്ട്. ഈ പ്രതിഭാസം ക്വാണ്ടം ടണലിങ്ങ് എന്നറിയപ്പെടുന്നു. തമോദ്വാരത്തിന്റെ ഗുരുത്വാകർഷണക്ഷേത്രത്തിൽ നിന്ന് ഊർജ്ജം സ്വീകരിച്ച് ഈ പ്രതീതകണത്തിന്‌ യഥാർത്ഥകണമായി മാറാനും ബഹിരാകാശത്തേക്ക് വികിരണമായി പുറത്തുപോകാനും സാധിക്കും.[134] ജോഡിയിലെ രണ്ടാമത്തെ കണത്തിന്‌ ഋണ ഊർജ്ജം ലഭിക്കുകയും തദ്ഫലമായി തമോദ്വാരത്തിന്റെ പിണ്ഡം കുറയുകയും ചെയ്യുന്നു. ഈ പ്രക്രിയ തുടരവെ തമോദ്വാരം ബാഷ്പീകരിക്കപ്പെടുകയും ഒടുവിൽ പൊട്ടിത്തെറിക്കുകയും ചെയ്യുന്നു.[135]

ബഹിരാകാശത്തുകൂടി സഞ്ചരിച്ചുകൊണ്ടിരിക്കുന്ന ഉന്നതോർജ്ജമുള്ള കണങ്ങളാണ്‌ കോസ്മിക് കിരണങ്ങൾ. 3.0 × 1020 eV വരെ ഊർജ്ജമുള്ള കോസ്മിക് കിരണങ്ങൾ നിരീക്ഷിക്കപ്പെട്ടിട്ടുണ്ട്.[136] ഇവ ഭൗമാന്തരീക്ഷത്തിലെ ന്യൂക്ലിയോണുകളുമായി ഘട്ടനത്തിലേർപ്പെടുമ്പോൾ ഒരു കണികാവർഷം സൃഷ്ടിക്കുന്നു. ഇങ്ങനെ രൂപം കൊള്ളുന്ന കണങ്ങളിൽപ്പെട്ടവയാണ്‌ പയോണുകൾ.[137] പയോണുകൾ ക്ഷയിച്ച് മ്യൂഓണുകളെ സൃഷ്ടിക്കുന്നു. ഭൂമിയിൽ നിന്ന് നിരീക്ഷിക്കപ്പെട്ടിട്ടുള്ള കോസ്മിക് കണങ്ങളിൽ പകുതിയിലേറെയും മ്യൂഓണുകളാണ്‌. മ്യൂഓണുകൾ ക്ഷയിച്ച് ഇലക്ട്രോണുകളും പോസിട്രോണുകളുമായി മാറുന്നു. ഋണചാർജ്ജുള്ള പയോണിന്റെ പരിണാമം ഇപ്രകാരമാണ്‌ :[138]

\displaystyle \mathrm \pi^{-} \rightarrow \mathrm \mu^{-} + \bar{\mathrm \nu_{\mathrm \mu}},
\displaystyle \mathrm \mu^{-} \rightarrow \mathrm e^{-} + \bar{\mathrm \nu}_\mathrm e +\mathrm \nu_{\mathrm \mu},

നിരീക്ഷണം[തിരുത്തുക]

A swirling green glow in the night sky above snow-covered ground
ഊർജ്ജമേറിയ ഇലക്ട്രോണുകൾ അന്തരീക്ഷത്തിലേക്കെത്തുന്നതാണ്‌ അറോറയ്ക്ക് പ്രധാന കാരണം.[139]

ഇലക്ട്രോണുകളെ വിദൂരത്തുനിന്ന് നിരീക്ഷിക്കണമെങ്കിൽ അവയുടെ വികിരണോർജ്ജത്തെ നിരീക്ഷിക്കേണ്ടതുണ്ട്. ഉദാഹരണമായി, നക്ഷത്രകൊറോണ മുതലായ ഉന്നതോർജ്ജപരിസ്ഥിതികളിൽ ഇലക്ട്രോണുകൾ പ്ലാസ്മ രൂപത്തിലാണുണ്ടാകുക. ഈ പ്ലാസ്മ ബ്രെംസ്ട്രാലങ് വികിരണം പുറപ്പെടുവിക്കുന്നു.[140]

ഫോട്ടോണുകളുടെ ആവൃത്തി അവയുടെ ഊർജ്ജത്തിന്‌ ആനുപാതികമാണ്‌. ബന്ധിത ഇലക്ട്രോൺ ആറ്റത്തിന്റെ ഒരു ഊർജ്ജസ്ഥിതിയിൽ നിന്ന് മറ്റൊന്നിലേക്ക് മാറുമ്പോൾ നിശ്ചിത ഊർജ്ജമുള്ള ഫോട്ടോൺ സ്വീകരിക്കുകയോ ഉത്സർജ്ജിക്കുകയോ ചെയ്യും. ഉദാഹരണമായി, വീതിയേറിയ വർണ്ണരാജിയുള്ള പ്രകാശം ആറ്റങ്ങളിലൂടെ കടന്നുപോവുകയാണെങ്കിൽ പുറത്തുവരുന്ന പ്രകാശത്തിൽ അവശോഷണരേഖകൾ കാണപ്പെടുന്നു. വിവിധ മൂലകങ്ങളുടെയും തന്മാത്രകളുടെയും അവശോഷണരേഖാശ്രേണികൾ വ്യത്യസ്തമായിരിക്കും. ഈ രേഖകളുടെ ശക്തിയും വീതിയും നിരീക്ഷിക്കുന്നത് വസ്തുക്കളുടെ പദാർത്ഥഘടനയും ഭൗതികഗുണങ്ങളും മനസ്സിലാക്കുന്നതിൽ സഹായിക്കുന്നു.[141][142]

പരീക്ഷണശാലകളിൽ ഇലക്ട്രോണുകളുടെ പ്രവർത്തനങ്ങൾ കണികാഡിറ്റെക്റ്ററുകളുപയോഗിച്ച് നിരീക്ഷിക്കാം. ഊർജ്ജം, സ്പിൻ, ചാർജ്ജ് മുതലായ പരിമാണങ്ങളളക്കാൻ ഇവയുപയോഗിച്ച് സാധിക്കും.[100] പോൾ ട്രാപ്, പെന്നിങ്ങ് ട്രാപ് എന്നിവ ദീർഘസമയത്തേക്ക് ചാർജ്ജിതകണങ്ങളെ ചെറിയ സ്ഥലത്ത് അടക്കിനിർത്താൻ സഹായിക്കുന്നു. കണികകളെക്കുറിച്ചുള്ള വിവരങ്ങൾ കൂടുതൽ കൃത്യതയോടെ മനസ്സിലാക്കാൻ ഇതുവഴി സാധ്യമാകുന്നു. പെന്നിങ്ങ് ട്രാപ്പുപയോഗിച്ച് ഒരു ഇലക്ട്രോണിനെ പത്ത് മാസം വരെ അടക്കിനിർത്താനായിട്ടുണ്ട്.[143] 1980-ൽ 11 അക്കങ്ങളുടെ കൃത്യതയോടെ ഇലക്ട്രോണിന്റെ കാന്തികമൊമന്റിന്റെ വില അളക്കാനായി. അതുവരെ കണ്ടെത്തിയ ഏത് ഭൗതികസ്ഥിരാങ്കത്തെക്കാളും കൃത്യമായിരുന്നു ഈ വില.[144]

സ്വീഡനിലെ ലുണ്ട് സർവകലാശാലയിലെ ഗവേഷകർ 2008 ഫെബ്രുവരിയിൽ ആദ്യമായി ഇലക്ട്രോണിന്റെ ഊർജ്ജവിതരണത്തിന്റെ വീഡിയോ ചിത്രമെടുത്തു. 1 ആറ്റോസെക്കന്റ് മാത്രം നീളുന്ന പ്രകാശഫ്ലാഷാണ്‌ ഇതിനായി ഉപയോഗിച്ചത്. ഇലക്ട്രോണിന്റെ ചലനം ആദ്യമായി നിരീക്ഷിക്കാൻ ഇതുവഴി സാധ്യമായി.[145][146]

ഖരവസ്തുക്കളിലെ ഇലക്ട്രോൺ വിതരണം ആംഗിൾ റിസോൾവ്ഡ് ഫോട്ടോഎമിഷൻ സ്പെക്ട്രോസ്കോപി (ARPES) ഉപയോഗിച്ച് നിരീക്ഷിക്കാം. ഫോട്ടോഇലക്ട്രിക് പ്രഭാവമുപയോഗിച്ച് വ്യൂൽക്രമ പരൽ സ്പേസ് അളന്നുകൊണ്ടാണ്‌ ഇത് സാധിക്കുന്നത്. പദാർത്ഥത്തിനുള്ളിലെ ഇലക്ട്രോണുകളുടെ ദിശ, വേഗം, വിസരണം എന്നിവ ARPES ഉപയോഗിച്ച് കണ്ടെത്താം.[147]

കുറിപ്പുകൾ[തിരുത്തുക]

  • ^  ഇലക്ട്രോണിന്റെ വൈദ്യുതചാർജ്ജ് മൗലികചാർജ്ജിന്റെ അതേ വിലയും വിപരീതചിഹ്നവും ഉള്ളതാണ്‌. പ്രോട്ടോണിന്റെ വൈദ്യുതചാർജ്ജ് മൗലികചാർജ്ജായി നിർവചിക്കപ്പെട്ടിരിക്കുന്നു.
  • ^  ഈ പരിമാണം സ്പിൻ ക്വാണ്ടം സംഖ്യയിൽ നിന്ന് ഈ സമവാക്യമുപയോഗിച്ച് കണ്ടെത്താം
\begin{alignat}{2}
 S & = \sqrt{s(s + 1)} \cdot \frac{h}{2\pi} \\
  & = \frac{\sqrt{3}}{2} \hbar \\
\end{alignat}
s = 12.
കാണുക : Gupta, M. C. (2001). Atomic and Molecular Spectroscopy. New Age Publishers. p. 81. ഐ.എസ്.ബി.എൻ. 8122413005. 
  • ^  Bohr magneton:
\textstyle\mu_B=\frac{e\hbar}{2m_e}.
  • ^  ഉദാത്ത ഇലക്ട്രോൺ ആരം ഈവിധമാണ്‌ കണ്ടെത്തുന്നത് : ഇലക്ട്രോണിന്റെ ചാർജ്ജ് ഏകമാനമായി ഒരു ഗോളീയവ്യാപ്തത്തിൽ വ്യാപിച്ചിരിക്കുകയാണെന്ന് കരുതുക. ഗോളത്തിന്റെ ഒരു ഭാഗം മറ്റേതിനെ വികർഷിക്കുമെന്നതിനാൽ ഗോളത്തിന്‌ വിദ്യുത്സ്ഥിതികോർജ്ജമുണ്ടാകും. ഇത് സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തമനുസരിച്ചുള്ള (E=mc2) ഇലക്ട്രോണിന്റെ നിശ്ചലോർജ്ജത്തിന്‌ തുല്യമാണെന്ന് കരുതുക. വിദ്യുത്സ്ഥിതികമനുസരിച്ച് r ആരവും e ചാർജ്ജുമുള്ള ഗോളത്തിന്റെ സ്ഥിതികോർജ്ജം E_{\mathrm p} = \frac{e^2}{8\pi \varepsilon_0 r}, ആണ്‌. (ഇവിടെ ε0 ശൂന്യതയുടെ പെർമിറ്റിവിറ്റിയാണ്‌.) m0 പിണ്ഡമുള്ള ഇലക്ട്രോണിന്റെ നിശ്ചലോർജ്ജം \textstyle E_{\mathrm p} = m_0 c^2, ആണ്‌. രണ്ടും സമമാനെന്ന് കരുതുകയാണെങ്കിൽ ഇലക്ട്രോണിന്റെ ആരത്തിന്‌ ലഭിക്കുന്ന വിലയാണ്‌ ഉദാത്ത ഇലക്ട്രോൺ ആരം.
കാണുക : Haken, Hermann; Wolf, Hans Christoph; Brewer, W. D. (2005). The Physics of Atoms and Quanta: Introduction to Experiments and Theory. Springer. p. 70. ഐ.എസ്.ബി.എൻ. 3540208070. 
  • ^  പ്രകാശവേഗവുമായി താരതമ്യം ചെയ്യുമ്പോൾ വളരെക്കുറഞ്ഞ വേഗത്തിൽ സഞ്ചരിക്കുന്ന ഇലക്ട്രോണുകൾ പുറപ്പെടുവിക്കുന്ന വികിരണം സൈക്ലോട്രോൺ വികിരണം എന്ന പേരിലും അറിയപ്പെടുന്നു.
  • ^  തരംഗദൈർഘ്യത്തിലെ വ്യതിയാനമായ Δλ വിസരണകോണായ θ യുമായി ഇപ്രകാരം ബന്ധപ്പെട്ടിരിക്കുന്നു:
\textstyle \Delta \lambda = \frac{h}{m_ec} (1 - \cos \theta),
ഇവിടെ c ശൂന്യതയിലെ പ്രകാശപ്രവേഗവും me ഇലക്ട്രോൺ പിണ്ഡവുമാണ്‌. Zombeck (2007:393,396) കാണുക
  • ^  ഇലക്ട്രോണിന്റെ വേഗം ഇപ്രകാരം കണ്ടുപിടിക്കാം :
\begin{alignat}{2}
 v & = c\sqrt{1\ - \gamma^{-2}} \\
  & \approx c\left(1 - 0.5 \gamma^{-2}\right) \\
  & = 0.999\,999\,999\,95\,c. \\
\end{alignat}

അവലംബം[തിരുത്തുക]

  1. Dahl, Per F. (1997). Flash of the Cathode Rays: A History of J J Thomson's Electron. CRC Press. p. 72. ഐ.എസ്.ബി.എൻ. 0750304537. 
  2. 2.0 2.1 2.2 Eichten, Estia J.; Peskin, Michael E. (1983). "New Tests for Quark and Lepton Substructure". Physical Review Letters 50 (11): 811–814. ഡി.ഒ.ഐ.:10.1103/PhysRevLett.50.811. 
  3. 3.0 3.1 Farrar, Wilfred V. (1969). "Richard Laming and the Coal-Gas Industry, with His Views on the Structure of Matter". Annals of Science 25: 243–254. ഡി.ഒ.ഐ.:10.1080/00033796900200141. 
  4. 4.0 4.1 4.2 Arabatzis, Theodore (2006). Representing Electrons: A Biographical Approach to Theoretical Entities. University of Chicago Press. pp. 70–74. ഐ.എസ്.ബി.എൻ. 0226024210. 
  5. Buchwald, Jed Z.; Warwick, Andrew (2001). Histories of the Electron: The Birth of Microphysics. MIT Press. pp. 195–203. ഐ.എസ്.ബി.എൻ. 0262524244. 
  6. 6.0 6.1 6.2 Dahl (1997:122–185).
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 The original source for CODATA is:
    Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2006-06-06). "CODATA recommended values of the fundamental physical constants". Reviews of Modern Physics 80: 633–730. ഡി.ഒ.ഐ.:10.1103/RevModPhys.80.633. 
    Individual physical constants from the CODATA are available at:
    "The NIST Reference on Constants, Units and Uncertainty". National Institute of Standards and Technology. ശേഖരിച്ചത് 2009-01-15. 
  8. 8.0 8.1 "CODATA value: proton-electron mass ratio". 2006 CODATA recommended values. National Institute of Standards and Technology. ശേഖരിച്ചത് 2009-07-18. 
  9. 9.0 9.1 9.2 9.3 Curtis, Lorenzo J. (2003). Atomic Structure and Lifetimes: A Conceptual Approach. Cambridge University Press. p. 74. ഐ.എസ്.ബി.എൻ. 0521536359. 
  10. Anastopoulos, Charis (2008). Particle Or Wave: The Evolution of the Concept of Matter in Modern Physics. Princeton University Press. pp. 236–237. ഐ.എസ്.ബി.എൻ. 0691135126. 
  11. 11.0 11.1 Wilson, Robert (1997). Astronomy Through the Ages: The Story of the Human Attempt to Understand the Universe. CRC Press. p. 138. ഐ.എസ്.ബി.എൻ. 0748407480. 
  12. 12.0 12.1 Pauling, Linus C. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an introduction to modern structural chemistry (3rd എഡി.). Cornell University Press. pp. 4–10. ഐ.എസ്.ബി.എൻ. 0801403332. 
  13. Shipley, Joseph T. (1945). Dictionary of Word Origins. The Philosophical Library. p. 133. 
  14. Baigrie, Brian (2006). Electricity and Magnetism: A Historical Perspective. Greenwood Press. pp. 7–8. ഐ.എസ്.ബി.എൻ. 0-3133-3358-0. 
  15. Barrow, John D. (1983). "Natural Units Before Planck". Royal Astronomical Society Quarterly Journal 24: 24–26. ബിബ്‌കോഡ്:1983QJRAS..24...24B. 
  16. Stoney, George Johnstone (1894). "Of the "Electron," or Atom of Electricity". Philosophical Magazine 38 (5): 418–420. 
  17. Soukhanov, Anne H. ed. (1986). Word Mysteries & Histories. Houghton Mifflin Company. p. 73. ഐ.എസ്.ബി.എൻ. 0-395-40265-4. 
  18. Guralnik, David B. ed. (1970). Webster's New World Dictionary. Prentice-Hall. p. 450. 
  19. Born, Max; Blin-Stoyle, Roger John; Radcliffe, J. M. (1989). Atomic Physics. Courier Dover Publications. p. 26. ഐ.എസ്.ബി.എൻ. 0486659844. 
  20. Dahl (1997:55–58).
  21. DeKosky, Robert (1983). "William Crookes and the quest for absolute vacuum in the 1870s". Annals of Science 40 (1): 1–18. ഡി.ഒ.ഐ.:10.1080/00033798300200101. 
  22. 22.0 22.1 22.2 Leicester, Henry M. (1971). The Historical Background of Chemistry. Courier Dover Publications. pp. 221–222. ഐ.എസ്.ബി.എൻ. 0486610535. 
  23. Dahl (1997:64–78).
  24. Zeeman, Pieter (1907). "Sir William Crookes, F.R.S.". Nature 77 (1984): 1–3. ഡി.ഒ.ഐ.:10.1038/077001a0. 
  25. Dahl (1997:99).
  26. Thomson, J. J. (1906). "Nobel Lecture: Carriers of Negative Electricity". The Nobel Foundation. ശേഖരിച്ചത് 2008-08-25. 
  27. Trenn, Thaddeus J. (1976). "Rutherford on the Alpha-Beta-Gamma Classification of Radioactive Rays". Isis 67 (1): 61–75. ഡി.ഒ.ഐ.:10.1086/351545. JSTOR 231134. 
  28. Becquerel, Henri (1900). "Déviation du Rayonnement du Radium dans un Champ Électrique". Comptes Rendus de l'Académie des Sciences 130: 809–815.  (ഫ്രഞ്ച്)
  29. Buchwald and Warwick (2001:90–91).
  30. Myers, William G. (1976). "Becquerel's Discovery of Radioactivity in 1896". Journal of Nuclear Medicine 17 (7): 579–582. PMID 775027. 
  31. Kikoin, Isaak K.; Sominskiĭ, Isaak S. (1961). "Abram Fedorovich Ioffe (on his eightieth birthday)". Soviet Physics Uspekhi 3: 798–809. ഡി.ഒ.ഐ.:10.1070/PU1961v003n05ABEH005812.  Original publication in Russian: Кикоин, И.К.; Соминский, М.С. (1960). "Академик А.Ф. Иоффе". Успехи Физических Наук 72 (10): 303–321. 
  32. Millikan, Robert A. (1911). "The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes' Law". Physical Review 32 (2): 349–397. ഡി.ഒ.ഐ.:10.1103/PhysRevSeriesI.32.349. 
  33. Das Gupta, N. N.; Ghosh, Sanjay K. (1999). "A Report on the Wilson Cloud Chamber and Its Applications in Physics". Reviews of Modern Physics 18: 225–290. ഡി.ഒ.ഐ.:10.1103/RevModPhys.18.225. 
  34. 34.0 34.1 34.2 Smirnov, Boris M. (2003). Physics of Atoms and Ions. Springer. pp. 14–21. ഐ.എസ്.ബി.എൻ. 038795550X. 
  35. Bohr, Niels (1922). "Nobel Lecture: The Structure of the Atom". The Nobel Foundation. ശേഖരിച്ചത് 2008-12-03. 
  36. Lewis, Gilbert N. (1916). "The Atom and the Molecule". Journal of the American Chemical Society 38 (4): 762–786. ഡി.ഒ.ഐ.:10.1021/ja02261a002. 
  37. 37.0 37.1 Arabatzis, Theodore; Gavroglu, Kostas (1997). "The chemists' electron". European Journal of Physics 18: 150–163. ഡി.ഒ.ഐ.:10.1088/0143-0807/18/3/005. 
  38. Langmuir, Irving (1919). "The Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society 41 (6): 868–934. ഡി.ഒ.ഐ.:10.1021/ja02227a002. 
  39. Scerri, Eric R. (2007). The Periodic Table. Oxford University Press. pp. 205–226. ഐ.എസ്.ബി.എൻ. 0195305736. 
  40. Massimi, Michela (2005). Pauli's Exclusion Principle, The Origin and Validation of a Scientific Principle. Cambridge University Press. pp. 7–8. ഐ.എസ്.ബി.എൻ. 0521839114. 
  41. Uhlenbeck, G. E.; Goudsmith, S. (1925). "Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons". Die Naturwissenschaften 13 (47). ബിബ്‌കോഡ്:1925NW.....13..953E.  (German)
  42. Pauli, Wolfgang (1923). "Über die Gesetzmäßigkeiten des anomalen Zeemaneffektes". Zeitschrift für Physik 16 (1): 155–164. ഡി.ഒ.ഐ.:10.1007/BF01327386.  Unknown parameter |bicode= ignored (സഹായം) (German)
  43. 43.0 43.1 de Broglie, Louis (1929). "Nobel Lecture: The Wave Nature of the Electron". The Nobel Foundation. ശേഖരിച്ചത് 2008-08-30. 
  44. Falkenburg, Brigitte (2007). Particle Metaphysics: A Critical Account of Subatomic Reality. Springer. p. 85. ഐ.എസ്.ബി.എൻ. 3540337318. 
  45. Davisson, Clinton (1937). "Nobel Lecture: The Discovery of Electron Waves". The Nobel Foundation. ശേഖരിച്ചത് 2008-08-30. 
  46. Schrödinger, Erwin (1926). "Quantisierung als Eigenwertproblem". Annalen der Physik 385 (13): 437–490. ഡി.ഒ.ഐ.:10.1002/andp.19263851302. ബിബ്‌കോഡ്:1926AnP...385..437S.  (German)
  47. Rigden, John S. (2003). Hydrogen. Harvard University Press. pp. 59–86. ഐ.എസ്.ബി.എൻ. 0674012526. 
  48. Reed, Bruce Cameron (2007). Quantum Mechanics. Jones & Bartlett Publishers. pp. 275–350. ഐ.എസ്.ബി.എൻ. 0763744514. 
  49. Dirac, Paul A. M. (1928). "The Quantum Theory of the Electron". Proceedings of the Royal Society of London A 117 (778): 610–624. ഡി.ഒ.ഐ.:10.1098/rspa.1928.0023. 
  50. Dirac, Paul A. M. (1933). "Nobel Lecture: Theory of Electrons and Positrons". The Nobel Foundation. ശേഖരിച്ചത് 2008-11-01. 
  51. Kragh, Helge (2002). Quantum Generations: A History of Physics in the Twentieth Century. Princeton University Press. p. 132. ഐ.എസ്.ബി.എൻ. 0691095523. 
  52. Gaynor, Frank (1950). Concise Encyclopedia of Atomic Energy. The Philosophical Library. p. 117. 
  53. "The Nobel Prize in Physics 1965". The Nobel Foundation. ശേഖരിച്ചത് 2008-11-04. 
  54. Panofsky, Wolfgang K. H. (1997). "The Evolution of Particle Accelerators & Colliders". Stanford University. ശേഖരിച്ചത് 2008-09-15. 
  55. Elder, F. R.; Gurewitsch, A. M.; Langmuir, R. V.; Pollock, H. C. (1947). "Radiation from Electrons in a Synchrotron". Physical Review 71 (11): 829–830. ഡി.ഒ.ഐ.:10.1103/PhysRev.71.829.5. 
  56. Hoddeson, Lillian; Brown, Laurie; Riordan, Michael; Dresden, Max (1997). The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. Cambridge University Press. pp. 25–26. ഐ.എസ്.ബി.എൻ. 0521578167. 
  57. Bernardini, Carlo (2004). "AdA: The First Electron–Positron Collider". Physics in Perspective 6 (2): 156–183. ഡി.ഒ.ഐ.:10.1007/s00016-003-0202-y. ബിബ്‌കോഡ്:2004PhP.....6..156B. 
  58. "Testing the Standard Model: The LEP experiments". CERN. 2008. ശേഖരിച്ചത് 2008-09-15. 
  59. "LEP reaps a final harvest". CERN Courier. 2000. ശേഖരിച്ചത് 2008-11-01. 
  60. Frampton, Paul H. (June 2000). "Quarks and Leptons Beyond the Third Generation". Physics Reports 330: 263–348. ഡി.ഒ.ഐ.:10.1016/S0370-1573(99)00095-2. 
  61. 61.0 61.1 61.2 Raith, Wilhelm; Mulvey, Thomas (2001). Constituents of Matter: Atoms, Molecules, Nuclei and Particles. CRC Press. pp. 777–781. ഐ.എസ്.ബി.എൻ. 0849312027. 
  62. Zombeck, Martin V. (2007). Handbook of Space Astronomy and Astrophysics (3rd എഡി.). Cambridge University Press. p. 14. ഐ.എസ്.ബി.എൻ. 0521782422. 
  63. Murphy, Michael T.; Flambaum, VV; Muller, S; Henkel, C (2008-06-20). "Strong Limit on a Variable Proton-to-Electron Mass Ratio from Molecules in the Distant Universe". Science 320 (5883): 1611–1613. PMID 18566280. ഡി.ഒ.ഐ.:10.1126/science.1156352. ശേഖരിച്ചത് 2008-09-03. 
  64. Zorn, Jens C.; Chamberlain, George E.; Hughes, Vernon W. (1963). "Experimental Limits for the Electron-Proton Charge Difference and for the Charge of the Neutron". Physical Review 129 (6): 2566–2576. ഡി.ഒ.ഐ.:10.1103/PhysRev.129.2566. 
  65. 65.0 65.1 Odom, B.; Hanneke, D.; D’urso, B.; Gabrielse, G. (2006). "New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron". Physical Review Letters 97: 030801(1–4). ഡി.ഒ.ഐ.:10.1103/PhysRevLett.97.030801. 
  66. Anastopoulos, Charis (2008). Particle Or Wave: The Evolution of the Concept of Matter in Modern Physics. Princeton University Press. pp. 261–262. ഐ.എസ്.ബി.എൻ. 0691135126. 
  67. Gabrielse, G.; Hanneke, D.; Kinoshita, T.; Nio, M.; Odom, B. (2006). "New Determination of the Fine Structure Constant from the Electron g Value and QED". Physical Review Letters 97: 030802(1–4). ഡി.ഒ.ഐ.:10.1103/PhysRevLett.97.030802. 
  68. Dehmelt, Hans (1988). "A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius". Physica Scripta T22: 102–110. ഡി.ഒ.ഐ.:10.1088/0031-8949/1988/T22/016. 
  69. Meschede, Dieter (2004). Optics, light and lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics. Wiley-VCH. p. 168. ഐ.എസ്.ബി.എൻ. 3527403647. 
  70. Steinberg, R. I.; Kwiatkowski, K.; Maenhaut, W.; Wall, N. S. (1999). "Experimental test of charge conservation and the stability of the electron". Physical Review D 61 (2): 2582–2586. ഡി.ഒ.ഐ.:10.1103/PhysRevD.12.2582. 
  71. Yao, W.-M. (July 2006). "Review of Particle Physics". Journal of Physics G: Nuclear and Particle Physics 33 (1): 77–115. ഡി.ഒ.ഐ.:10.1088/0954-3899/33/1/001. 
  72. 72.0 72.1 72.2 Munowitz, Michael (2005). Knowing, The Nature of Physical Law. Oxford University Press. pp. 162–218. ഐ.എസ്.ബി.എൻ. 0195167376. 
  73. Kane, Gordon (2006-10-09). "Are virtual particles really constantly popping in and out of existence? Or are they merely a mathematical bookkeeping device for quantum mechanics?". Scientific American. ശേഖരിച്ചത് 2008-09-19. 
  74. Taylor, John (1989). Davies, Paul, എഡി. The New Physics. Cambridge University Press. p. 464. ഐ.എസ്.ബി.എൻ. 0521438314.  Unknown parameter |chaptertitle= ignored (സഹായം)
  75. 75.0 75.1 Genz, Henning (2001). Nothingness: The Science of Empty Space. Da Capo Press. pp. 241–243, 245–247. ഐ.എസ്.ബി.എൻ. 0738206105. 
  76. Gribbin, John (1997-01-25). "More to electrons than meets the eye". New Scientist. ശേഖരിച്ചത് 2008-09-17. 
  77. Levine, I.; Koltick, D.; Howell, B.; Shibata, E.; Fujimoto, J.; Tauchi, T.; Abe, K.; Abe, T. മറ്റുള്ളവർക്കൊപ്പം. (1997). "Measurement of the Electromagnetic Coupling at Large Momentum Transfer". Physical Review Letters 78: 424–427. ഡി.ഒ.ഐ.:10.1103/PhysRevLett.78.424. 
  78. Murayama, Hitoshi (March 10–17, 2006). "Supersymmetry Breaking Made Easy, Viable and Generic". Proceedings of the XLIInd Rencontres de Moriond on Electroweak Interactions and Unified Theories. La Thuile, Italy. arΧiv:0709.3041.  —lists a 9% mass difference for an electron that is the size of the Planck distance.
  79. Schwinger, Julian (1948). "On Quantum-Electrodynamics and the Magnetic Moment of the Electron". Physical Review 73 (4): 416–417. ഡി.ഒ.ഐ.:10.1103/PhysRev.73.416. 
  80. Huang, Kerson (2007). Fundamental Forces of Nature: The Story of Gauge Fields. World Scientific. pp. 123–125. ഐ.എസ്.ബി.എൻ. 9812706453. 
  81. Foldy, Leslie L. (1950). "On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit". Physical Review 78: 29–36. ഡി.ഒ.ഐ.:10.1103/PhysRev.78.29. 
  82. Sidharth, Burra G. (August 2008). "Revisiting Zitterbewegung". International Journal of Theoretical Physics 48: 497–506. ഡി.ഒ.ഐ.:10.1007/s10773-008-9825-8. arΧiv:0806.0985. 
  83. Elliott, Robert S. (1978). "The history of electromagnetics as Hertz would have known it". IEEE Transactions on Microwave Theory and Techniques 36 (5): 806–823. ഡി.ഒ.ഐ.:10.1109/22.3600. ശേഖരിച്ചത് 2008-09-22.  A subscription required for access.
  84. Munowitz (2005:140).
  85. Crowell, Benjamin (2000). Electricity and Magnetism. Light and Matter. pp. 129–152. ഐ.എസ്.ബി.എൻ. 0970467044. 
  86. Munowitz (2005:160).
  87. Mahadevan, Rohan; Narayan, Ramesh; Yi, Insu (1996). "Harmony in Electrons: Cyclotron and Synchrotron Emission by Thermal Electrons in a Magnetic Field". Astrophysical Journal 465: 327–337. ഡി.ഒ.ഐ.:10.1086/177422. arΧiv:astro-ph/9601073v1. 
  88. Rohrlich, Fritz (December 1999). "The self-force and radiation reaction". American Journal of Physics 68 (12): 1109–1112. ഡി.ഒ.ഐ.:10.1119/1.1286430. 
  89. Georgi, Howard (1989). Davies, Paul, എഡി. The New Physics. Cambridge University Press. p. 427. ഐ.എസ്.ബി.എൻ. 0521438314.  Unknown parameter |chaptertitle= ignored (സഹായം)
  90. Blumenthal, George J. (1970). "Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases". Reviews of Modern Physics 42: 237–270. ഡി.ഒ.ഐ.:10.1103/RevModPhys.42.237. 
  91. Staff (2008). "The Nobel Prize in Physics 1927". The Nobel Foundation. ശേഖരിച്ചത് 2008-09-28. 
  92. Chen, Szu-yuan; Chen, Szu-Yuan; Maksimchuk, Anatoly (1998). "Experimental observation of relativistic nonlinear Thomson scattering". Nature 396: 653–655. ഡി.ഒ.ഐ.:10.1038/25303. 
  93. Beringer, Robert; Montgomery, C. G. (1942). "The Angular Distribution of Positron Annihilation Radiation". Physical Review 61 (5–6): 222–224. ഡി.ഒ.ഐ.:10.1103/PhysRev.61.222. 
  94. Wilson, Jerry; Buffa, Anthony (2000). College Physics (4th എഡി.). Prentice Hall. p. 888. ഐ.എസ്.ബി.എൻ. 0130824445. 
  95. Eichler, Jörg (2005-11-14). "Electron–positron pair production in relativistic ion–atom collisions". Physics Letters A 347 (1–3): 67–72. ഡി.ഒ.ഐ.:10.1016/j.physleta.2005.06.105. 
  96. Hubbell, J. H. (June 2006). "Electron positron pair production by photons: A historical overview". Radiation Physics and Chemistry 75 (6): 614–623. ഡി.ഒ.ഐ.:10.1016/j.radphyschem.2005.10.008. ബിബ്‌കോഡ്:2006RaPC...75..614H. 
  97. Quigg, Chris (June 4–30, 2000). "The Electroweak Theory". TASI 2000: Flavor Physics for the Millennium. Boulder, Colorado: arXiv. p. 80. arΧiv:hep-ph/0204104v1. 
  98. Mulliken, Robert S. (1967). "Spectroscopy, Molecular Orbitals, and Chemical Bonding". Science 157 (3784): 13–24. PMID 5338306. ഡി.ഒ.ഐ.:10.1126/science.157.3784.13. 
  99. Burhop, Eric H. S. (1952). The Auger Effect and Other Radiationless Transitions. New York: Cambridge University Press. pp. 2–3. 
  100. 100.0 100.1 Grupen, Claus (June 28 – July 10, 1999). "Physics of Particle Detection". AIP Conference Proceedings, Instrumentation in Elementary Particle Physics, VIII 536. Istanbul: Dordrecht, D. Reidel Publishing Company. pp. 3–34. ഡി.ഒ.ഐ.:10.1063/1.1361756. 
  101. Jiles, David (1998). Introduction to Magnetism and Magnetic Materials. CRC Press. pp. 280–287. ഐ.എസ്.ബി.എൻ. 0412798603. 
  102. Löwdin, Per Olov; Erkki Brändas, Erkki; Kryachko, Eugene S. (2003). Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per- Olov Löwdin. Springer. pp. 393–394. ഐ.എസ്.ബി.എൻ. 140201290X. 
  103. McQuarrie, Donald Allan; Simon, John Douglas (1997). Physical Chemistry: A Molecular Approach. University Science Books. pp. 325–361. ഐ.എസ്.ബി.എൻ. 0935702997. 
  104. Daudel, R.; Bader, R.F.W.; Stephens, M.E.; Borrett, D.S. (1973-10-11). "The Electron Pair in Chemistry". Canadian Journal of Chemistry 52: 1310–1320. ഡി.ഒ.ഐ.:10.1139/v74-201. ശേഖരിച്ചത് 2008-10-12. 
  105. Rakov, Vladimir A.; Uman, Martin A. (2007). Lightning: Physics and Effects. Cambridge University Press. p. 4. ഐ.എസ്.ബി.എൻ. 0521035414. 
  106. Freeman, Gordon R. (1999). "Triboelectricity and some associated phenomena". Materials science and technology 15 (12): 1454–1458. 
  107. Forward, Keith M.; Lacks, Daniel J.; Sankaran, R. Mohan (May 2009). "Methodology for studying particle–particle triboelectrification in granular materials". Journal of Electrostatics 67 (2–3): 178–183. ഡി.ഒ.ഐ.:10.1016/j.elstat.2008.12.002. 
  108. Weinberg, Steven (2003). The Discovery of Subatomic Particles. Cambridge University Press. pp. 15–16. ഐ.എസ്.ബി.എൻ. 052182351X. 
  109. Lou, Liang-fu (2003). Introduction to phonons and electrons. World Scientific. pp. 162,164. ഐ.എസ്.ബി.എൻ. 9789812384614. 
  110. Guru, Bhag S.; Hızıroğlu, Hüseyin R. (2004). Electromagnetic Field Theory. Cambridge University Press. pp. 138, 276. ഐ.എസ്.ബി.എൻ. 0521830168. 
  111. 111.0 111.1 Ziman, J. M. (2001). Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press. p. 260. ഐ.എസ്.ബി.എൻ. 0198507798. 
  112. Achuthan, M. K.; Bhat, K. N. (2007). Fundamentals of Semiconductor Devices. Tata McGraw-Hill. pp. 49–67. ഐ.എസ്.ബി.എൻ. 007061220X. 
  113. Main, Peter (1993-06-12). "When electrons go with the flow: Remove the obstacles that create electrical resistance, and you get ballistic electrons and a quantum surprise". New Scientist 1887: 30. ശേഖരിച്ചത് 2008-10-09. 
  114. Blackwell, Glenn R. (2000). The Electronic Packaging Handbook. CRC Press. pp. 6.39–6.40. ഐ.എസ്.ബി.എൻ. 0849385911. 
  115. Durrant, Alan (2000). Quantum Physics of Matter: The Physical World. CRC Press. pp. 43, 71–78. ഐ.എസ്.ബി.എൻ. 0750307218. 
  116. Staff (2008). "The Nobel Prize in Physics 1972". The Nobel Foundation. ശേഖരിച്ചത് 2008-10-13. 
  117. Kadin, Alan M. (2007). "Spatial Structure of the Cooper Pair". Journal of Superconductivity and Novel Magnetism 20 (4): 285–292. ഡി.ഒ.ഐ.:10.1007/s10948-006-0198-z. arΧiv:cond-mat/0510279. 
  118. "Discovery About Behavior Of Building Block Of Nature Could Lead To Computer Revolution". ScienceDaily.com. 2009-07-31. ശേഖരിച്ചത് 2009-08-01. 
  119. Jompol, Yodchay; Ford, CJ; Griffiths, JP; Farrer, I; Jones, GA; Anderson, D; Ritchie, DA; Silk, TW മറ്റുള്ളവർക്കൊപ്പം. (2009-07-31). "Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid". Science 325 (5940): 597–601. PMID 19644117. ഡി.ഒ.ഐ.:10.1126/science.1171769. ശേഖരിച്ചത് 2009-08-01. 
  120. Staff (2008). "The Nobel Prize in Physics 1958, for the discovery and the interpretation of the Cherenkov effect". The Nobel Foundation. ശേഖരിച്ചത് 2008-09-25. 
  121. Staff (2008-08-26). "Special Relativity". Stanford Linear Accelerator Center. ശേഖരിച്ചത് 2008-09-25. 
  122. Adams, Steve (2000). Frontiers: Twentieth Century Physics. CRC Press. p. 215. ഐ.എസ്.ബി.എൻ. 0748408401. 
  123. Lurquin, Paul F. (2003). The Origins of Life and the Universe. Columbia University Press. p. 2. ഐ.എസ്.ബി.എൻ. 0231126557. 
  124. Silk, Joseph (2000). The Big Bang: The Creation and Evolution of the Universe (3rd എഡി.). Macmillan. pp. 110–112, 134–137. ഐ.എസ്.ബി.എൻ. 080507256X. 
  125. Christianto, Vic (October 2007). "Thirty Unsolved Problems in the Physics of Elementary Particles" (PDF). Progress in Physics 4: 112–114. ശേഖരിച്ചത് 2008-09-04. 
  126. Kolb, Edward W. (1980-04-07). "The Development of Baryon Asymmetry in the Early Universe". Physics Letters B 91 (2): 217–221. ഡി.ഒ.ഐ.:10.1016/0370-2693(80)90435-9. 
  127. Sather, Eric (Spring/Summer 1996). "The Mystery of Matter Asymmetry" (PDF). Beam Line. University of Stanford. ശേഖരിച്ചത് 2008-11-01. 
  128. Burles, Scott; Nollett, Kenneth M.; Turner, Michael S. (1999-03-19). Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space. arXiv, University of Chicago. arΧiv:astro-ph/9903300. 
  129. Boesgaard, A. M.; Steigman, G (1985). "Big bang nucleosynthesis – Theories and observations". Annual review of astronomy and astrophysics 23 (2): 319–378. ഡി.ഒ.ഐ.:10.1146/annurev.aa.23.090185.001535. ശേഖരിച്ചത് 2008-08-28. 
  130. 130.0 130.1 Barkana, Rennan (2006-08-18). "The First Stars in the Universe and Cosmic Reionization". Science 313 (5789): 931–934. PMID 16917052. ഡി.ഒ.ഐ.:10.1126/science.1125644. ശേഖരിച്ചത് 2008-11-01. 
  131. Burbidge, E. Margaret; Burbidge, G. R.; Fowler, William A.; Hoyle, F. (1957). "Synthesis of Elements in Stars". Reviews of Modern Physics 29 (4): 548–647. ഡി.ഒ.ഐ.:10.1103/RevModPhys.29.547. 
  132. Rodberg, L. S.; Weisskopf, VF (1957). "Fall of Parity: Recent Discoveries Related to Symmetry of Laws of Nature". Science 125 (3249): 627–633. PMID 17810563. ഡി.ഒ.ഐ.:10.1126/science.125.3249.627. 
  133. Fryer, Chris L. (September 1999). "Mass Limits For Black Hole Formation". The Astrophysical Journal 522 (1): 413–418. ഡി.ഒ.ഐ.:10.1086/307647. ബിബ്‌കോഡ്:1999ApJ...522..413F. 
  134. Parikh, Maulik K.; Wilczek, F (2000). "Hawking Radiation As Tunneling". Physical Review Letters 85 (24): 5042–5045. PMID 11102182. ഡി.ഒ.ഐ.:10.1103/PhysRevLett.85.5042. 
  135. Hawking, S. W. (1974-03-01). "Black hole explosions?". Nature 248: 30–31. ഡി.ഒ.ഐ.:10.1038/248030a0. 
  136. Halzen, F.; Hooper, Dan (2002). "High-energy neutrino astronomy: the cosmic ray connection". Reports on Progress in Physics 66: 1025–1078. ഡി.ഒ.ഐ.:10.1088/0034-4885/65/7/201. ശേഖരിച്ചത് 2008-08-28. 
  137. Ziegler, James F. "Terrestrial cosmic ray intensities". IBM Journal of Research and Development 42 (1): 117–139. ഡി.ഒ.ഐ.:10.1147/rd.421.0117. 
  138. Sutton, Christine (1990-08-04). "Muons, pions and other strange particles". New Scientist. ശേഖരിച്ചത് 2008-08-28. 
  139. Wolpert, Stuart (2008-07-24). "Scientists solve 30-year-old aurora borealis mystery". University of California. ശേഖരിച്ചത് 2008-10-11. 
  140. Gurnett, Donald A.; Anderson, RR (1976-12-10). "Electron Plasma Oscillations Associated with Type III Radio Bursts". Science 194 (4270): 1159–1162. PMID 17790910. ഡി.ഒ.ഐ.:10.1126/science.194.4270.1159. 
  141. Martin, W. C.; Wiese, W. L. (May 2007). "Atomic Spectroscopy: A Compendium of Basic Ideas, Notation, Data, and Formulas". National Institute of Standards and Technology. ശേഖരിച്ചത് 2007-01-08. 
  142. Fowles, Grant R. (1989). Introduction to Modern Optics. Courier Dover Publications. pp. 227–233. ഐ.എസ്.ബി.എൻ. 0486659577. 
  143. Staff (2008). "The Nobel Prize in Physics 1989". The Nobel Foundation. ശേഖരിച്ചത് 2008-09-24. 
  144. Ekstrom, Philip (1980). "The isolated Electron" (PDF). Scientific American 243 (2): 91–101. ശേഖരിച്ചത് 2008-09-24. 
  145. Mauritsson, Johan. "Electron filmed for the first time ever" (PDF). Lunds Universitet. ശേഖരിച്ചത് 2008-09-17. 
  146. Mauritsson, J.; Johnsson, P.; Mansten, E.; Swoboda, M.; Ruchon, T.; L’huillier, A.; Schafer, K. J. (2008). "Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope" (pdf). Physical Review Letters 100: 073003. ഡി.ഒ.ഐ.:10.1103/PhysRevLett.100.073003. 
  147. Damascelli, Andrea (2004). "Probing the Electronic Structure of Complex Systems by ARPES". Physica Scripta T109: 61–74. ഡി.ഒ.ഐ.:10.1238/Physica.Topical.109a00061. 
"http://ml.wikipedia.org/w/index.php?title=ഇലക്ട്രോൺ&oldid=1712465" എന്ന താളിൽനിന്നു ശേഖരിച്ചത്